Читаем Кентерберийские головоломки полностью

128. Решение этой головоломки приведено на рисунке слева. Это единственное решение, удовлетворяющее заданным условиям. Однако если бы одна из 8 звезд не была уже предварительно помещена на рисунке, то существовало бы 8 способов расположения, получающихся из данного с помощью поворотов и отражений.



Так, если вы будете поворачивать рисунок, чтобы при этом каждая из сторон квадрата оказалась по очереди внизу, то получите 4 решения, а если для каждого из них вы построите зеркально-симметричное решение, то добавится еще 4 решения. Следовательно, эти 8 решений представляют собой лишь вариации одного «фундаментального» решения. Но в случае, когда место одной из звезд предварительно не фиксируется, существует и другое фундаментальное решение, показанное на рисунке справа. Однако это расположение обладает определенной симметрией и потому порождает только 4 решения.


129. На рисунке показано, как следует переложить плитки. Как и прежде, не хватает одной желтой и одной розовой плиток. Я хотел бы подчеркнуть, что в предыдущем расположении желтую и розовую плитки в седьмой горизонтали можно поменять местами, но никакое иное расположение невозможно.



130. При некоторых расположениях получается больше диагональных слов из четырех букв, чем при других, и мы сначала поддаемся искушению отдать им предпочтение; но это ложный след, поскольку все, что мы выигрываем в диагональных направлениях, мы проигрываем вдоль вертикалей и горизонталей. Конечно, тому, кто решает эту задачу, сразу приходит в голову, что слова LIVE и EVIL стоят вдвое больше других слов, ибо их мы всегда считаем дважды. Это важное наблюдение, хотя порой те расположения, которые содержат больше всего таких слов, оказываются бесплодными в отношении других, и мы в целом остаемся в проигрыше.



Приведенное на рисунке расположение удовлетворяет условию, согласно которому никакие две одинаковые буквы не должны находиться на одной вертикали, горизонтали или диагонали; и оно приводит к тому, что данные 5 слов удается прочитать 20 раз – 6 по горизонтали, 6 по вертикали, 4 вдоль диагоналей, отмеченных стрелками слева, и 4 вдоль диагоналей, отмеченных стрелками справа. Это максимум.

Четыре множества из восьми букв можно расположить на доске с 64 клетками 604 различными способами, при которых никакие две одинаковые буквы не находятся на одной прямой. При этом расположения, получающиеся друг из друга с помощью поворотов и отражений, не считаются различными и, кроме того, не учитываются перестановки внутри самих букв, то есть, например, перемена местами букв L и Е.

Далее, странно не только то, что приведенное расположение с 20 словами оказывается максимальным, но также и то, что максимум можно получить лишь из этого расположения. Однако если вы поменяете местами в данном решении буквы V с буквами I, a L – с Е, то получите по-прежнему 20 слов. Следовательно, существуют 2 способа достичь максимума из одного и того же расположения. Минимальное число слов равно нулю, то есть буквы можно расположить таким образом, чтобы ни по какому направлению не удавалось прочесть ни одного слова.


131. Обозначим буквами А, К, Q, J соответственно туза, короля, даму и валета, а буквами D, S, H, С – бубны, пики, червы и трефы. На рисунке приведены два способа, 1 и 2, расположения букв каждой группы, при которых никакие две одинаковые буквы не располагаются на одной прямой, хотя поворот на четверть оборота расположения 1 приведет к расположению 2.



Если мы наложим друг на друга эти два квадрата, то получим расположение 3, дающее одно решение. Но в каждом квадрате мы можем переставить буквы на верхней горизонтали 24 способами, не меняя схемы расположения. Так, на рисунке 4 буквы S помещены на место букв D из расположения 2, буквы H – на место S, С – на место H и D – на место С. Отсюда, очевидно, следует, что два исходных расположения можно скомбинировать 24 × 24 = 576 способами. Однако ошибка, которую сделал Лябосн, состояла в том, что А, К, Q, J он располагал способом 1, a D, S, Н, С – способом 2. Таким образом, он учел отражения и повороты на пол-оборота, но проглядел повороты на четверть оборота. Очевидно, их можно менять местами. Поэтому, если отражения и повороты считать новыми решениями, правильным ответом будет 2 × 576 = 1152. По-другому можно сказать, что пары на верхней горизонтали можно записать 16 × 9 × 4 × 1 = 576 различными способами, а учитывая то, что квадрат можно заполнить двумя способами, получаем всего 1152 решения.


132. Как отмечалось, при данных условиях поместить все изображенные на рисунке буквы в ящик невозможно, но головоломка состояла в том, чтобы поместить максимально возможное количество таких букв.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное