Читаем Хаос. Создание новой науки полностью

Лоренц чувствовал, что должна существовать связь между неповторяемостью атмосферных явлений и неспособностью метеорологов предсказать их – иными словами, связь между апериодичностью и непредсказуемостью[34]. Найти простые уравнения для апериодичности было делом нелегким – поначалу компьютер воспроизводил идеально повторяющиеся циклы – однако после череды небольших усложнений своей модели Лоренц все же достиг успеха. Это произошло, когда он ввел в машину уравнение, описывающее изменение количества тепла при движении с востока на запад, соответствующее реальной разнице в том, как солнце нагревает восточное побережье Северной Америки и Атлантический океан. В результате повторяющиеся циклы исчезли.

Эффект бабочки был не случайностью, но необходимостью. Допустим, небольшие возмущения так и остаются небольшими, не нарастая в системе, рассуждал ученый. Приближаясь к ранее пройденному состоянию, погода будет повторяться и в дальнейшем. Циклы станут предсказуемыми и в конце концов потеряют все свое очарование. Чтобы воспроизвести богатый спектр реальной погоды земного шара, ее чудесное многообразие, вряд ли можно желать чего-либо лучшего, чем эффект бабочки.

Как уже говорилось, данный феномен имеет и строгое научное название: «сильная зависимость от начальных условий». Эта зависимость не была абсолютной новостью, например, ее превосходно иллюстрирует детский стишок[35]:

Не было гвоздя – подкова пропала,Не было подковы – лошадь захромала,Лошадь захромала – командир убит,Конница разбита, армия бежит,

Враг вступает в город, пленных не щадя,

Оттого что в кузнице не было гвоздя[36].

Как наука, так и жизнь учит, что цепь событий может иметь критическую точку, в которой небольшие изменения приобретают особую значимость. Суть хаоса в том, что такие точки находятся везде и распространяются повсюду. В системах, подобных погоде, сильная зависимость от начальных условий представляет собой неизбежное следствие взаимодействия процессов, происходящих на разных масштабах.

Коллеги Лоренца были изумлены тем, как он соединил апериодичность и сильную зависимость от начальных условий в своей миниатюрной модели погоды. Всего двенадцать уравнений, раз за разом просчитываемые с механической точностью! Как может подобное многообразие, такая непредсказуемость – в чистом виде хаос! – возникнуть из простой детерминистской системы?

Отложив на время занятия погодой, Лоренц стал искать более простые способы воспроизвести сложное поведение объектов. Один из них был найден в виде системы из трех нелинейных, то есть выражающих не прямую пропорциональную зависимость, уравнений. Линейные соотношения изображаются на графике прямой линией и достаточно просты для понимания: чем больше x, тем больше y. Линейные уравнения всегда разрешимы, что делает их подходящими для учебников. Линейные системы обладают неоспоримым достоинством: вы можете разбирать их на некие модули, а затем собирать снова, как конструктор, – эффекты будут попросту суммироваться[37].

Нелинейные системы в общем виде не могут быть решены, и эффекты в них не складываются. Изучая жидкостные и механические системы, специалисты обычно стараются исключить нелинейные элементы, к примеру трение. Если пренебречь им, можно получить простую линейную зависимость между ускорением хоккейной шайбы и силой, придающей ей это ускорение. Приняв в расчет трение, мы усложним формулу, поскольку сила трения будет меняться в зависимости от того, с какой скоростью шайба уже движется. Нелинейность означает, что каждое действие меняет правила игры. Влияние трения не является постоянным, потому что оно зависит от скорости. Скорость, в свою очередь, зависит от трения. Из-за этой обоюдной изменчивости рассчитать нелинейность весьма непросто. Вместе с тем она порождает разнообразные типы поведения объектов, не наблюдаемые в линейных системах. В динамике жидкостей все сводится к одному дифференциальному уравнению: уравнению Навье – Стокса. Будучи удивительно коротким, оно связывает скорость, давление, плотность и вязкость жидкости. Но оно нелинейно, и поэтому природу этих связей зачастую невозможно уловить, так как исследовать поведение нелинейного уравнения – все равно что блуждать по лабиринту, стены которого перестраиваются с каждым вашим шагом. Как сказал Нейман, «характер уравнения… меняется одновременно во всех релевантных отношениях; меняется как порядок, так и степень. Отсюда могут проистекать большие математические сложности»[38]. Другими словами, мир был бы совсем иным и хаос не был бы так уж необходим, если бы в уравнении Навье – Стокса не таился демон нелинейности.

Перейти на страницу:

Все книги серии Книги политеха

Легко ли плыть в сиропе. Откуда берутся странные научные открытия
Легко ли плыть в сиропе. Откуда берутся странные научные открытия

Как связаны между собой взрывчатка и алмазы, кока-кола и уровень рождаемости, поцелуи и аллергия? Каково это – жить в шкуре козла или летать между капель, как комары? Есть ли права у растений? Куда больнее всего жалит пчела? От несерьезного вопроса до настоящего открытия один шаг… И наука – это вовсе не унылый конвейер по производству знаний, она полна ошибок, заблуждений, курьезных случаев, нестандартных подходов к проблеме. Ученые, не побоявшиеся взглянуть на мир без предубеждения, порой становятся лауреатами Игнобелевской премии «за достижения, которые заставляют сначала рассмеяться, а потом – задуматься». В своей книге авторы Генрих Эрлих и Сергей Комаров рассказывают об этих невероятных открытиях, экспериментах исследователей (в том числе и над собой), параллелях (например, между устройством ада и черными дырами), далеко идущих выводах (восстановление структуры белка и поворот времени вспять), а самое главное – о неиссякаемой человеческой любознательности, умении задавать вопросы и, конечно же, чувстве юмора.

Генрих Владимирович Эрлих , Сергей М. Комаров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Хаос. Создание новой науки
Хаос. Создание новой науки

«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.В формате PDF A4 сохранен издательский макет.

Джеймс Глик

Научная литература
Луна. История будущего
Луна. История будущего

Британский журналист и писатель Оливер Мортон освещает в своих работах влияние научно-технического прогресса на нашу жизнь. Луна испокон веков занимала второстепенное место в мифологическом сознании, в культурном контексте, а потом и в астрономических исследованиях. Краткий апогей ее славы, когда по лунной поверхности прошлись люди, окончился более полувека назад. И тем не менее Луна всегда рядом, скромная, но незаменимая, неразрывно связанная с прошлым, настоящим и будущим человечества. Мортон создает ее объемный портрет, прорисовывает все грани нашего с ней взаимодействия и наглядно показывает: что бы ни происходило с нами дальше, Луна продолжит играть свою тихую, но ключевую роль.В формате PDF A4 сохранен издательский макет книги.

Оливер Мортон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебная и научная литература / Образование и наука
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной

Современная астрофизика – это быстро развивающаяся наука, которая использует новейшие (и очень дорогие) приборы и суперкомпьютеры. Это приводит к огромному потоку результатов: экзопланеты и темная энергия, гравитационные волны и первые снимки Плутона с близкого расстояния. В результате астрономическая картина мира постоянно меняется. Однако многие фундаментальные особенности этой картины уже сформировались. Мы знаем, что живем в расширяющейся Вселенной, чей возраст составляет немногим менее 14 млрд лет. Нам известно, как формировались и формируются ядра элементов. Мы можем наблюдать разные стадии формирования звезд и планетных систем. Удается даже разглядеть, как в дисках вокруг звезд формируются планеты. Тем не менее остается много вопросов и загадок. Что такое темное вещество и темная энергия? Как взрываются сверхновые разных типов? Как устроены черные дыры? Наконец, есть ли еще жизнь во Вселенной, и какой она может быть?

Сергей Борисович Попов

Справочники

Похожие книги