Ученые подвели итоги своим исследованиям в 1981 году в журнале
Тем временем Ричард Коэн, кардиолог и физик, работая в рамках совместной программы Гарварда и Массачусетского технологического института в области медицинских наук и технологий, обнаружил целый ряд последовательностей удвоений периода в экспериментах с собаками. Используя компьютерные модели, он изучил один из возможных режимов сердечной деятельности, при котором фронт волны электрической активности разбивается об островки ткани. «Перед нами вполне ясный пример феномена Фейгенбаума, – пояснял Коэн, – регулярное явление, которое при определенных обстоятельствах превращается в хаотичное. Выясняется также, что электрическая активность сердца имеет множество параллелей с другими системами, склонными к хаотическому поведению»[381]
.Ученые из Университета Макгилла также обратились к накопленным ранее данным о различных типах нарушений сердечной деятельности. Один из хорошо известных синдромов состоит в том, что отклоняющиеся, эктопические ритмы перемежаются с нормальным синусовым. Гласc и его коллеги изучали закономерности подобных случаев, подсчитывая число синусовых биений между эктопическими. У некоторых пациентов данные расходились, но по какой-то причине всегда выражались нечетным числом: 3, 5 или У других больных число нормальных биений всегда являлось частью последовательности 2, 5, 8, 11…
«Численные наблюдения, весьма непонятные, проделаны, но в механизме происходящего не так-то просто разобраться, – признавал Гласc. – В числах всегда присутствует некая регулярность, но им свойственна также и значительная доля неупорядоченности. Один из девизов нашей работы – поиск порядка внутри хаоса»[382]
.Традиционно изучение фибрилляции велось в двух направлениях. Один из классических подходов предполагал, что из анормальных центров внутри самой мышечной ткани исходят вторичные задающие ритм сигналы, которые вступают в конфликт с главным. Считалось, что эти крошечные эктопические центры испускают волны с интервалами, неприемлемыми для нормального функционирования сердца, и их взаимодействие и перекрывание разрушает согласованную волну сокращений сердечной мышцы. Исследования ученых из Университета Макгилла до некоторой степени подтвердили эту гипотезу, продемонстрировав, что многие виды неправильного динамического поведения могут быть порождены взаимодействием внешней пульсации и присущего сердечной ткани ритма. Но почему вообще эти дополнительные центры возникают – все еще сложно было объяснить.
Сторонники другого подхода сосредоточили внимание не на зарождении электрических волн, а на том, каким образом они проходят сквозь сердце. Именно в этом направлении работали ученые из Гарварда и Массачусетского технологического института. Они обнаружили, что определенные отклонения в самой волне, распространяющейся в форме окружностей, способны вызывать так называемый повторный вход (циркуляцию возбуждения), когда некоторые зоны сердца начинают новую пульсацию слишком рано, тем самым препятствуя временному расслаблению мышц, необходимому для поддержания согласованного движения крови.
Сконцентрировавшись на методах нелинейной динамики, обе группы исследователей понимали, что небольшие изменения одного из параметров, например синхронности или электрической проводимости, могут вывести здоровую в других отношениях систему через точку бифуркации к качественно новому поведению. Ученые приступили к изучению проблем сердца в глобальном масштабе, связав воедино ряд нарушений ритма, которые прежде считались не имеющими отношения друг к другу. Более того, Уинфри считал, что, несмотря на различие подходов, и школа «эктопических сокращений», и школа «повторного входа» движутся в верном направлении. Его топологический взгляд предполагал, что эти две идеи могут на самом деле оказаться единым целым.