«Политика в известном смысле повлияла на самый стиль моего творчества, о чем я в дальнейшем очень сожалел. Я использовал выражения типа „Естественно…“, „Весьма интересным наблюдением является то, что…“. На самом деле было все что угодно, кроме естественного. Все эти интересные наблюдения являли собой результат долгих и сложных исследований, поиска доказательств и боязни ошибиться. Я взял философский и несколько отстраненный тон, поскольку хотел быть принятым. Рискни я заикнуться, что предлагаю радикальный подход, читатели тут же потеряли бы всякий интерес. Позже я вернулся к своим утверждениям, формулируя их несколько иначе: „Интересно заметить, что…“ Но это было уже совсем не то, чего я ожидал».
Обращаясь к прошлому, Мандельбро с грустью вспоминал, что реакция ученых на его исследования была весьма предсказуемой. Первый вопрос всегда звучал так: «Кто вы и почему интересуетесь нашей дисциплиной?» Далее следовало: «Как рассказанное вами относится к тому, что делаем мы? Почему вы не объясняете свои теории на основе уже известных нам фактов?» И наконец: «Вы уверены, что используете стандартную математику?» (Да, более чем уверен!) «А почему же тогда мы ничего о ней не знаем?» (По причине того, что она, будучи стандартной, весьма малопонятна.)
В этом отношении математика отличается от физики и иных прикладных наук. Раздел физики, однажды устарев и став малопродуктивным, обычно навсегда уходит в прошлое. Подобное может показаться странным и послужит, возможно, источником вдохновения для физика наших дней, однако исчерпавшая себя тема, как правило, «умирает» в силу весьма веских причин. Математика же, напротив, полна тропинок и окольных путей, которые, казалось бы, ведут в никуда, но в будущем становятся магистралью новой науки. Потенции абстрактной идеи невозможно предсказать. Поэтому математики оценивают чистую истину с эстетической точки зрения, пытаясь, по примеру художников, найти в ней некую красоту, изящество. Так и Мандельбро, с его любовью к древностям, извлек из небытия довольно многообещающую область математики, которую грозила погрести под собой пыль веков.
В самую последнюю очередь собеседники Мандельбро осведомлялись: «Какого мнения математики о вашей работе?» (Им все равно, поскольку она не обогащает математику. По правде говоря, они удивлены тем, что их идеи находят свое отражение в природе.)
В конце концов термином «фрактал» стали обозначать метод описания, вычисления и рассмотрения множества неупорядоченных и фрагментарных, зазубренных и разъединенных объектов — начиная от кристаллообразных кривых-снежинок и заканчивая прерывистой цепью галактик. Фрактальная кривая воплощает собой организующую структуру, скрытую в невероятной сложности таких форм. Студенты в состоянии понять фракталы и даже «поиграть» с ними — ведь фракталы первичны настолько же, насколько и формы Евклида. Простейшими программами для создания фрактальных изображений заинтересовались фанаты персональных компьютеров.
С наибольшим энтузиазмом идеи Мандельбро восприняли люди, которые занимались прикладной наукой, изучали нефть, горные породы или металлы, а особенно специалисты исследовательских центров корпораций. Например, к середине 80-х годов довольно много народу в огромном научном подразделении корпорации «Эксон» трудилась над проблемами фракталов. В компании «Дженерал электрик» фракталы были приняты на вооружение в качестве основного инструмента для изучения полимеров, а также для сугубо секретных изысканий в сфере безопасности ядерных реакторов. В Голливуде им нашли, пожалуй, самое эксцентричное применение: с помощью фракталов создавали невероятно реалистичные пейзажи, земные и инопланетные. Они помогали создавать спецэффекты в кинофильмах.