Читаем Хаос. Создание новой науки полностью

Ученый раньше никогда не работал с потоками жидкости, но это совсем не отбило охоту к исследованиям, так же как и не обескураживало его менее удачливых предшественников. «Новое открывают, как правило, непрофессионалы, — говорил он. — На самом деле не существует сложной и глубокой теории турбулентности. Все, что мы можем выяснить о ней, имеет более общую природу, а посему доступно и людям, ранее этим не занимавшимся». Не составляло труда понять, почему турбулентность не поддавалась анализу, — поведение потоков жидкости описывали нелинейные дифференциальные уравнения, в большинстве своем нерешаемые. И все же Руэлль разработал весьма абстрактную альтернативу схеме Ландау, изложенную на языке Смэйла, где пространство использовалось как податливый материал, который можно сжать, вытянуть и согнуть, образовав формы типа «подковы». Работа была написана в Институте высших научных исследований, с перерывом на визиты к голландскому математику Флорису Такенсу, и опубликована совместно в 1971 г. В стиле статьи нельзя было ошибиться. Она являла собой чистую математику (заметьте, вышедшую из-под пера физика!) и содержала определения, теоремы и доказательства, за которыми с неизбежностью следовало: Допустим… Вот один из примеров: «Доказательство (5.2.). Допустим, что Хμ есть однопараметрическое семейство Ck векторных полей в Гильбертовом пространстве H, таком, что…»


И все же в заголовке публикации, которая называлась «О природе турбулентности», прослеживалась связь с реальным миром и чувствовалось нарочитое созвучие с названием знаменитой работы Ландау «К вопросу о турбулентности». Руэлль и Такенс явно желали уйти гораздо дальше математики, пытаясь предложить альтернативу традиционным взглядам на порог турбулентности. Они предположили, что источником всего сложного в турбулентности является не наложение частот, ведущих к появлению бесконечного множества независимых и перекрывающих друг друга движений жидкости, а всего лишь три отдельных движения. Кое-что в их логике казалось весьма смутным, заимствованным, да и попросту неверным, или тем, другим и третьим сразу — пятнадцать лет спустя мнения на сей счет еще расходились.

Тем не менее глубокая проницательность, комментарии, заметки на полях и вкрапления из физики сделали работу объектом внимания на долгие годы. Наиболее соблазнительным казался образ, окрещенный авторами странным аттрактором. Это название было суггестивным, как говорят психоаналитики, т. е. самим своим звучанием рождало подсознательные ассоциации, что Руэлль ощутил позднее. Термин «странный аттрактор» приобрел такую популярность у исследователей хаоса, что Такенс и Руэлль потом оспаривали друг у друга авторство. Ни тот ни другой не могли отчетливо припомнить, кто первый использовал термин. Такенс — высокий, румяный и неистовый норманн — временами ронял: «Вам когда-нибудь доводилось спрашивать у Господа, как он создал эту чертову Вселенную?.. Я ничего не помню… Творю, не запоминая подробностей этого процесса». На что Руэлль, главный из соавторов, мягко замечал: «Разные люди и работают по-разному. Некоторым людям следовало бы писать статьи в одиночку, чтобы затем единолично пожинать лавры».

Странный аттрактор обитает в фазовом пространстве — одном из удивительнейших изобретений современной науки. Фазовое пространство делает возможным превращение чисел в изображения, извлекая даже малую толику существенной информации из движущихся систем, механических или жидкостных, и наглядно демонстрируя все их возможности. Физики уже имели дело с двумя более или менее простыми типами аттракторов — фиксированными точками и замкнутыми кривыми, описывающими поведение таких систем, которые достигли устойчивого состояния или непрерывно себя повторяют.

В фазовом пространстве все известные данные о динамической системе в каждый момент времени концентрируются в одной точке, которая и представляет собой данную систему в кратчайшем временном отрезке. В следующее мгновение система уже претерпит изменения, пусть даже совсем незначительные, и точка изменит свое местонахождение. Всю длительность существования системы можно изобразить на графике, следя за перемещениями точки с течением времени и наблюдая за ее орбитой в фазовом пространстве.

Перейти на страницу:

Похожие книги