Читаем Характер физических законов полностью

Возьмем явление радиоактивного распада, в котором испускаются электрон и нейтрино, например, то, о котором мы уже говорили раньше и которое связано с распадом нейтрона на протон, электрон и антинейтрино. Есть еще много других реакций радиоактивного распада, при которых заряд ядра увеличивается на единицу и испускается электрон. Но здесь интересно вот что: если измерить вращение этого электрона – а электроны испускаются, вращаясь вокруг собственной оси, то окажется, что все они вращаются справа налево (если смотреть им вслед, т. е. когда они испускаются в южном направлении, то вращаются так же, как и Земля). В том, что испускаемые электроны всегда вращаются в одном направлении, что у них, так сказать, левосторонняя ориентация, есть определенный смысл. Дело здесь обстоит так, как будто при b-распаде у ружья, стреляющего электронами, нарезной ствол. Нарезать ствол можно двумя способами. Здесь всегда есть направление «наружу», и у вас всегда есть выбор нарезать ствол так, чтобы пуля вращалась либо справа налево, либо слева направо. Наш эксперимент показывает, что электронами стреляют из оружия, нарезанного справа налево. Поэтому, используя этот факт, мы можем позвонить нашему марсианину и сказать: «Послушай-ка, возьми радиоактивное вещество, нейтрон, и понаблюдай за электронами, испускаемыми при b-распаде. Если электрон выстреливается вертикально вверх, то направление его вращения из-за спины в тело будет слева. Так ты и узнаешь, где левая сторона. Именно с этой стороны расположено сердце». Так что отличить правое от левого можно, а значит, закон о симметрии мира относительно правого и левого рухнул.

Следующее, о чем я хочу поговорить, – это об отношении законов симметрии к законам сохранения. В предыдущей лекции мы говорили о принципах сохранения – сохранения энергии, количества движения и т. п. Исключительно интересно, что между законами сохранения и законами симметрии существует, по-видимому, глубокая связь. Эта связь получает свое объяснение, по крайней мере на нашем сегодняшнем уровне знаний, только в квантовой механике. Тем не менее я покажу вам одно проявление этой связи.

Предположим, что законы физики допускают формулировку, основанную на принципе минимума. Тогда можно показать, что из любого закона, допускающего перенос экспериментальной установки, т. е. допускающего пространственные переносы, вытекает закон сохранения количества движения. Между законами симметрии и законами сохранения имеется глубокая связь, но эта связь покоится на принципе минимума. В нашей второй лекции мы говорили о возможности сформулировать физические законы, утверждая, что частица переходит из одного положения в другое за заданный промежуток времени, пробуя различные пути. Существует определенная величина, которую, может быть не очень удачно, называют действием. Если вычислить действие для различных путей перехода, то окажется, что для реального пути, выбранного частицей, это действие всегда меньше, чем для любого другого. Поэтому при новом способе формулировки законов природы мы утверждаем, что для реального пути действие, вычисляемое по определенной математической формуле, всегда меньше, чем для любых других путей. Но вместо того чтобы говорить о минимуме чего-то, можно сказать, что если путь немножко изменить, то сначала почти ничего не изменится. Представьте себе, что вы гуляете по холмам (по гладким, конечно, поскольку все математические выражения, о которых идет речь, гладкие) и приходите на самое низкое место. Тогда, если вы чуть-чуть шагнете в сторону, высота вашего места почти не изменится. Если вы находитесь в самой низкой или самой высокой точке, один шаг не играет никакой роли, в первом приближении он не оказывает никакого влияния на вашу высоту над уровнем моря, – ведь это не то, что на крутом склоне, где вы за один шаг заметно спускаетесь или поднимаетесь в зависимости от того, в каком направлении вы идете. Теперь вам, наверное, понятно, почему один шаг из самой низкой точки не играет роли. Если бы это было не так, то шаг в другом направлении означал бы, что вы спускаетесь. Но так как вы находились перед этим в самой низкой точке и, следовательно, спуститься ниже уже нельзя, то в качестве первого приближения можно считать, что один шаг не играет никакой роли. Поэтому мы знаем, что если путь немножко изменить, то это в первом приближении не изменит действия. Нарисуем какой-нибудь путь, соединяющий точки A и B, и другой возможный путь следующего вида (см. рис. 27). Сначала мы перепрыгиваем сразу в близлежащую точку C, а затем движемся точно по такому же пути, как и раньше, до другой точки D, отстоящей от B на то же расстояние, что и C от A, поскольку оба пути абсолютно идентичны. Но, как мы только что установили, законы физики таковы, что общая величина действия при движении по пути АСDB в первом приближении совпадает с действием при движении по первоначальному пути AB – в силу принципа минимума, если AB – реальный путь.

Рис. 27

Перейти на страницу:

Все книги серии Великие ученые и их открытия

Радость познания
Радость познания

Ричард Фейнман (1918–1988) — выдающийся американский физик, удостоенный Нобелевской премии по квантовой электродинамике, один из создателей атомной бомбы, автор знаменитого курса лекций, который стал настольной книгой для каждого, кто открывает для себя потрясающий мир физики.Великолепная коллекция коротких работ гениального ученого, талантливого педагога, великолепного оратора и просто интересного человека Ричарда Фейнмана — блестящие, остроумные интервью и речи, лекции и статьи. Вошедшие в этот сборник работы не просто дают читателю представление об энциклопедическом интеллекте прославленного физика, но и равно позволяют заглянуть в его повседневную жизнь и внутренний мир.Книга мнений и идей — о перспективах науки, об ответственности ученых за судьбы мира, о главных проблемах бытия — познавательно, остроумно и необыкновенно интересно.

Ричард Филлипс Фейнман

Публицистика / Научная литература / Прочая научная литература / Образование и наука / Документальное
Наука, не-наука и все-все-все
Наука, не-наука и все-все-все

Ричард Фейнман не раз признавался, что строгий порядок, красота и гармония окружающего мира с самого раннего детства приводили его в восхищение и вызывали непреодолимое желание проникнуть в его тайны. Радость узнавания была столь глубокой и искренней, что ему захотелось разделить ее вместе со всеми, что и сподвигло его стать страстным популяризатором науки. Его знаменитые лекции для гуманитариев вошли в легенду и привлекли в науку не одно поколение молодежи.Предлагаемый сборник, в который включены ранее не публиковавшиеся лекции, прочитанные Фейнманом в Вашингтонском университете в 1963 году, открывает знаменитого ученого с новой стороны – как человека, имеющего весьма оригинальное и интересное мнение о конфликте между наукой и религией, о том, можно ли доверять политикам, о нетрадиционной медицине и даже о воспитании детей и посещении Земли НЛО.Публикуется с разрешения издательства Basic Books, an imprint of Perseus Books, a division of PBG Publishing, LLC, a subsidiary of Hachette Book Group, Inc. (CША) при содействии Агентства Александра Корженевского (Россия).

Ричард Филлипс Фейнман

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература