Первым имплантом, использовавшимся для измерения и отправки электрических сигналов в системы тела, стал кардиостимулятор – в данном случае речь про клетки сердечной мышцы. Когда кардиостимулятор фиксирует, что сердце не бьется как положено, он посылает сигнал, заставляющий сердце биться с более ровным ритмом. Первым пациентом с кардиостимулятором стал шведский инженер Арне Ларссон, и произошло это еще в 1958 году[143]
. Хотя замена ему потребовалась уже через восемь часов, а до момента своей смерти в 2001 году он перенес 25 операций (для замены или ремонта устройства), кардиостимуляторы быстро превратились в механизмы, на которые мы действительно можем положиться. Сегодня существуют импланты сетчатки, позволяющие слепым людям видеть, импланты улитки (часть слухового аппарата человека), благодаря которым глухие люди слышат, и электроды, вживляемые глубоко в мозг и лечащие такие заболевания, как болезнь Паркинсона, хронические боли, эпилепсию, тревожность и депрессию. Эти электроды отправляют сигналы в сигнальную систему мозга и тем самым контролируют его действия. Электрические соединения, расположенные в самом мозге, бывают необыкновенно точными, но во многих случаях достаточно электродов, расположенных прямо на внутренней стороне черепа или даже снаружи на голове.Электрические цепи также возможно подсоединить к нервным или мышечным клеткам, связанным с центральной нервной системой. Таким образом сигнальную систему можно использовать для управления механизмом, расположенным снаружи тела, например протез руки. Мозг обладает удивительной способностью учиться управлению подобными внешними механизмами. Он не зависит от тех же самых проводящих путей, которыми он управлял бы настоящей рукой. Достаточно посмотреть на искусственную руку или понять, как она двигается, чтобы мозг выстроил связи между нервными клетками, благодаря которым он сможет управлять механизмом так, словно это часть тела.
Прямые связи между механизмами и сигнальными системами тела можно использовать и в обратном направлении: есть возможность влиять на мозг или мышцы с помощью сигналов снаружи. Сигнальные системы насекомых устроены проще, чем наши, и существуют системы, позволяющие дистанционно управлять жуками, кузнечиками и молью – вживленные электроды подсоединены к маленькому компьютеру, расположенному на голове. Таким образом, можно, например, создать войско кузнечиков с дистанционным управлением, если вам нужны мелкие механизмы, умеющие делать снимки или проникать в тесные пространства. Животных, чей мозг устроен сложнее, таких как крысы и голуби, можно контролировать с помощью воздействия на системы наказания и поощрения. В этом случае электроды подсоединяются к нервным клеткам напрямую, или же сигналы используются для высвобождения химических веществ, которые получают клетки мозга.
О киборгах – своего рода гибридах человека и машины, обладающих экстраординарными способностями, – мы знаем из фильмов и книг. Но в широком смысле слова люди с кардиостимуляторами и имплантами сетчатки, можно сказать, уже киборги. И у нас есть все возможности продолжить развитие в этом направлении.
На сегодняшний день почти немыслимо в какой-то момент не купить ребенку личный мобильный телефон до того, как он пойдет в среднюю школу. Когда мои дети вырастут, для них, возможно, немыслимым станет вождение собственного автомобиля. Дети моих детей, возможно, сочтут само собой разумеющимся имплантированные механизмы, дающие им определенные преимущества: следить за здоровьем, улучшать зрение и слух – или иметь возможность общаться с внешним миром, оплачивать счета и отправлять сообщения, не пользуясь внешними устройствами.
Будущее – за роботами
Электронные компоненты постепенно уменьшаются в размерах. Компьютер в моем мобильном намного мощнее, чем тот, на котором работал мой отец в те времена, когда я была маленькой, – он был огромным, размером с холодильник. На сегодняшний момент мы узнали так много о том, как работают материалы, вплоть до уровня атомов, что способны создавать очень мелкие механизмы – чтобы их увидеть, нам понадобятся мощные современные микроскопы. При желании мы сможем отправить компьютеры и роботов в артерии и клетки нашего тела.
Можно подумать, что развитие в сторону все более и более мелких механизмов – хорошая новость для тех, кто переживает по поводу того, что в будущем какие-то материалы закончатся. Чем меньше устройство, тем меньше сырья для него требуется. Вот один из аргументов в пользу того, что мы сможем и дальше расти и развиваться как цивилизация, не увеличивая нагрузку на мировые природные ресурсы. Для работы более мелких единиц необходимо и меньше энергии. В будущем мелкие механизмы, вживленные в человеческие тела, начнут собирать имеющуюся в них химическую энергию и, таким образом, работать без батарей, требующих подзарядки[144]
.