Читаем Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул полностью

Единственное отличие заключается в форме молекулы. Если трансжиры внешне похожи на зубочистку, то цис-жиры похожи на зубочистку, сломанную пополам.

Когда трансжиры попадают внутрь организма, в артерии, они могут связаться с другими трансжирами. Тогда они начинают накапливаться в определенном месте, из-за чего происходит закупоривание. Иногда трансжиров собирается так много, что они полностью забивают артерию и препятствуют оттоку насыщенной кислородом крови от сердца. Одним из опаснейших последствий этого является инфаркт. Подобную ситуацию можно с легкостью представить на примере чего-то «реального». Например, что вы берете несколько зубочисток, собираете их вместе, а затем помещаете в конец шланга. Если зубочистки располагаются вплотную друг к другу, то вода не сможет через них пробиться.

А теперь представьте, что сначала вы сломаете эти зубочистки пополам. Вы сможете так же аккуратно закупорить ими конец шланга? Сомневаюсь. Как бы вы ни старались, все равно останутся зазоры, через которые будет просачиваться вода; то же самое и с цис-жирами, которые не могут так же легко закупорить артерии.

Надеюсь, из этого примера вы поняли, что форма молекулы действительно важна (и для химии, и для ваших артерий). По форме молекулы можно понять, где располагаются электроны, как молекула будет выглядеть в трехмерном пространстве и, что гораздо важнее, как именно электроны образуют связи между атомами.

Но сперва давайте рассмотрим атомы повнимательнее.

Во-первых, у каждого слоя атома есть карманы – карман нижнего белья, карман рубашки, карман пальто. Каждый из этих карманов представляет собой атомную орбиталь. На каждой орбитали может находиться не более двух электронов. Три, четыре или больше – никогда; в карманах нет свободного места, к тому же ни один из них не сможет справиться с зарядом третьего электрона. Не забывайте, что электроны постоянно отталкиваются друг от друга, поэтому им нужно много свободного пространства.

По правде говоря, даже если на орбитали есть только два электрона, они испытывают ужасный дискомфорт. Чтобы минимизировать отталкивание, они вращаются в противоположных направлениях: один – по часовой стрелке, другой – против.

Давайте поэкспериментируем. Пусть ваша левая рука будет двигаться по часовой стрелке, а правая – против. Я каждый год провожу такие демонстрации для своих студентов и выгляжу очень глупо. Не могу заставить свои руки двигаться в противоположных направлениях… Студенты постоянно смеются надо мной. Но вы знаете, почему электроны двигаются в противоположных направлениях? Это может показаться странным, но именно так они стабилизируют атом. Движение по кругу позволяет электронам разойтись по малой орбитали, благодаря чему они всегда находятся на максимальном расстоянии друг от друга.

Я могу предугадать ваши мысли: сейчас вы, скорее всего, думаете, что получили совершенно бесполезную информацию. Почему вас должны волновать какие-то орбитали и то, сколько электронов там помещается? Как эти орбитали влияют на вашу жизнь?

Честно говоря, я понимаю, почему вы задаетесь подобными вопросами. Но атомы и молекулы в реальной жизни встречаются, мягко говоря, часто. Посмотрите на что-то простое, например, на свою одежду. Молекулы в красителях придали вашей рубашке красный или синий цвет. От расстояния между молекулами зависит то, насколько дышащей будет ткань или как хорошо она будет отводить пот, если вы носите влагоотводящее термобелье.

А орбитали? Их наука намного сложнее и, как мне кажется, красивее.

Четвертого июля[3] мы видим, как электроны перемещаются между орбитами при запуске фейерверков. Если фейерверк красный, значит, электроны перемещаются на соседние орбитали, а если зеленый, значит, перемещаются на большие расстояния.

Мы также может наблюдать «работу» орбиталей на Хэллоуин каждый раз, когда видим фосфоресценцию – химическое явление, когда вещи светятся в темноте. Мы можем этого не осознавать, но мы постоянно наблюдаем за тем, как электроны движутся по своим орбиталям или переходят на другие. А еще нам очень повезло, что ученые смогли разработать безопасные для человека способы игры с электронами и орбиталями – например, у нас есть бенгальские огни и светящиеся палочки.

Есть четыре типа атомных орбиталей или карманов у атома, где могут располагаться электроны. Это s-орбитали, p-орбитали, d-орбитали и f-орбитали. Такая классификация была предложена ученым Эрвином Шредингером. В своей статье он установил, как связаны между собой атомы. По правде говоря, за последние сто лет практически ничего не поменялось. Химики вроде меня до сих пор считают, что существуют четыре главных типа атомных орбиталей.

Не забывайте: вне зависимости от формы и размера орбитали на ней могут располагаться только два электрона. Эти электроны должны быть на максимальном расстоянии друг от друга (из-за постоянного отталкивания друг от друга).

Перейти на страницу:

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука