Читаем Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул полностью

Прямо сейчас вокруг вас происходят сотни дипольдипольных взаимодействий. Если вы сидите на кухне, то они происходит в лежащих рядом яблоках и грушах, даже в куске свинины, говядины или рыбы! Если рядом стоит стакан воды, содовой или вина, то вы также наблюдаете особые диполь-дипольные взаимодействия. Они настолько сильны, что у них есть собственные названия. Молекулы воды – это идеальный пример молекул с водородной связью. Почему? Потому что это полярные молекулы с сильными полярными связями.

Но не забывайте, что водородная связь – это не ковалентная связь, возникающая, когда атомы водорода и кислорода объединяются, образуя молекулу воды. Водородная связь возникает между атомом водорода одной молекулы воды и атомом кислорода другой молекулы воды. Эта связь очень сильная: только представьте, шесть дюймов льда могут выдержать многотонный грузовик. Грузовик! С ума сойти, да?

Когда-то существовало шоу «Ледовый путь дальнобойщиков» (Ice Road Truckers), которым я была просто одержима. И знаете, это шоу – прекрасный пример водородной связи. Как человек, выросший в Мичигане, я хорошо знаю, какую опасность представляет собой тонкий лед. И я с замиранием сердца смотрела, как эти отважные дальнобойщики ездят по льду. Но водородные связи настолько сильны, что даже грузовики весом в несколько тонн могут спокойно ездить по замерзшим озерам Канады.

К счастью, у дальнобойщиков есть свои секреты и хитрости. Они могут на глаз оценить состояние льда, чтобы избежать катастрофы; но при этом не могут оценить силу притяжения, существующего между молекулами воды. Понимаете, при разрушении водородных связей молекулы могут начать фазовый переход. Даже при повреждении их небольшая часть лед может превратиться в воду. И это серьезная проблема для тех, кто работает или проводит время на замерзших озерах. Кстати, когда разрушаются все водородные связи сразу, вода может превратиться в пар. Итак, когда мы наблюдаем за таянием льда или тем, как кипит вода, на самом деле мы наблюдаем разрушение водородных связей.

И наоборот, мы можем наблюдать образование водородных связей при замерзании воды. Я использую этот фазовый перевод каждый раз, когда провожу демонстрацию под названием «Грозовое облако». Я добавляю горячую воду в емкость с жидким азотом, из-за чего вода на дне замерзает. В этом процессе тепло от горячей воды передается жидкому азоту, в результате чего жидкий азот (N2) испаряется, образуя большое облако газообразного азота.

Как и в воде, притяжение между молекулами азота пропадает до того, как он переходит из жидкой фазы в газообразную. Но, в отличие от воды, азот не может образовывать водородные связи, так как эта связь образуется между полярными молекулами. Вместо этого молекулы азота образуют дисперсионное взаимодействие.

Оно возникает в том случае, если между молекулами появляется слабое притяжение. Помните, в прошлой главе мы говорили о трансжирах? Причина, по которой они могут скапливаться (и закупоривать артерии), состоит в том, что они используют дисперсионное взаимодействие, чтобы молекулы плотно сцеплялись друг с другом. Это касается каждой неполярной молекулы.

Но каково это, быть неполярной молекулой? Что это значит?

Неполярные молекулы не имеют положительную или отрицательную сторону. Электроны в них располагаются симметрично: представьте печенье с шоколадной крошкой. Если вы разделите его пополам, то на обеих половинках будет одинаковое количество шоколадной крошки. То же самое и с неполярными частицами – там электроны равномерно распределены по всей молекуле.

Интересный факт: неполярные молекулы примерно на наносекунду могут стать полярными! Но потом они возвращаются в обычное состояние. Это как если я надену шляпу и очки для пары фотографий в фотокабине, а затем сниму и снова стану обычной Кейт, какой была до этого.

Но как молекулы «переодеваются», чтобы добиться асимметричного распределения электронов внутри себя? У атома и молекул бывают моменты, когда электроны внутри них не уравновешены. Например, в молекуле азота (N2) на два атома приходится четырнадцать электронов. Возможно, что на какую-то долю секунды на левой стороне молекулы будет шесть электронов, а на правой – восемь. В этот момент левая сторона молекулы имеет частично положительный заряд, а правая – частично отрицательный.

В моем опыте «Грозовое облако» одна молекула азота (молекула А) находится рядом с другой (молекула В). Когда на правой стороне молекулы А внезапно появляются восемь электронов, электроны в молекуле В будут отталкиваться от них. Это можно сравнить с посещением дома с привидениями, когда из ниоткуда на вас выпрыгивает скелет. Вы и ваши друзья отскакиваете и бежите в противоположном от скелета направлении. То же самое происходит при дисперсионном взаимодействии. Всего лишь один момент, когда молекула имеет несбалансированный заряд – или всего лишь один скелет, пугающий целую толпу, – и возникает эффект домино для целой группы молекул.

Перейти на страницу:

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука