Прямо сейчас вокруг вас происходят сотни дипольдипольных взаимодействий. Если вы сидите на кухне, то они происходит в лежащих рядом яблоках и грушах, даже в куске свинины, говядины или рыбы! Если рядом стоит стакан воды, содовой или вина, то вы также наблюдаете особые диполь-дипольные взаимодействия. Они настолько сильны, что у них есть собственные названия. Молекулы воды – это идеальный пример молекул с водородной связью. Почему? Потому что это полярные молекулы с сильными полярными связями.
Но не забывайте, что водородная связь – это не ковалентная связь, возникающая, когда атомы водорода и кислорода объединяются, образуя молекулу воды. Водородная связь возникает между атомом водорода одной молекулы воды и атомом кислорода другой молекулы воды. Эта связь
Когда-то существовало шоу
К счастью, у дальнобойщиков есть свои секреты и хитрости. Они могут на глаз оценить состояние льда, чтобы избежать катастрофы; но при этом не могут оценить силу притяжения, существующего между молекулами воды. Понимаете, при разрушении водородных связей молекулы могут начать фазовый переход. Даже при повреждении их небольшая часть лед может превратиться в воду. И это серьезная проблема для тех, кто работает или проводит время на замерзших озерах. Кстати, когда разрушаются
И наоборот, мы можем наблюдать образование водородных связей при замерзании воды. Я использую этот фазовый перевод каждый раз, когда провожу демонстрацию под названием «Грозовое облако». Я добавляю горячую воду в емкость с жидким азотом, из-за чего вода на дне замерзает. В этом процессе тепло от горячей воды передается жидкому азоту, в результате чего жидкий азот (N2) испаряется, образуя большое облако газообразного азота.
Как и в воде, притяжение между молекулами азота пропадает до того, как он переходит из жидкой фазы в газообразную. Но, в отличие от воды, азот не может образовывать водородные связи, так как эта связь образуется между полярными молекулами. Вместо этого молекулы азота образуют дисперсионное взаимодействие.
Оно возникает в том случае, если между молекулами появляется слабое притяжение. Помните, в прошлой главе мы говорили о трансжирах? Причина, по которой они могут скапливаться (и закупоривать артерии), состоит в том, что они используют дисперсионное взаимодействие, чтобы молекулы плотно сцеплялись друг с другом. Это касается каждой неполярной молекулы.
Но каково это, быть
Неполярные молекулы не имеют положительную или отрицательную сторону. Электроны в них располагаются симметрично: представьте печенье с шоколадной крошкой. Если вы разделите его пополам, то на обеих половинках будет одинаковое количество шоколадной крошки. То же самое и с неполярными частицами – там электроны равномерно распределены по всей молекуле.
Интересный факт: неполярные молекулы примерно на наносекунду могут стать полярными! Но потом они возвращаются в обычное состояние. Это как если я надену шляпу и очки для пары фотографий в фотокабине, а затем сниму и снова стану обычной Кейт, какой была до этого.
Но как молекулы «переодеваются», чтобы добиться асимметричного распределения электронов внутри себя? У атома и молекул бывают моменты, когда электроны внутри них не уравновешены. Например, в молекуле азота (N2) на два атома приходится четырнадцать электронов. Возможно, что на какую-то долю секунды на левой стороне молекулы будет шесть электронов, а на правой – восемь. В этот момент левая сторона молекулы имеет частично положительный заряд, а правая – частично отрицательный.
В моем опыте «Грозовое облако» одна молекула азота (молекула А) находится рядом с другой (молекула В). Когда на правой стороне молекулы А внезапно появляются восемь электронов, электроны в молекуле В будут отталкиваться от них. Это можно сравнить с посещением дома с привидениями, когда из ниоткуда на вас выпрыгивает скелет. Вы и ваши друзья отскакиваете и бежите в противоположном от скелета направлении. То же самое происходит при дисперсионном взаимодействии. Всего лишь один момент, когда молекула имеет несбалансированный заряд – или всего лишь один скелет, пугающий целую толпу, – и возникает эффект домино для целой группы молекул.