Читаем Химия — просто полностью

Учение Декарта о свете получило развитие в работах нидерландского физика Х. Гюйгенса, рассматривавшего свет как волны в эфире и даже разработавшего математические основы волновой оптики. В конце XVII века были открыты такие оптические явления, как дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин; изучено Гюйгенсом), оценка скорости света (1675, Рёмер). И их необходимо было согласовать с моделью светоносного эфира. Тут-то и появились две модели, объясняющие, что такое свет:

1. Эмиссионная (или корпускулярная) теория. Она подразумевала, что свет — это поток частиц. Об этом говорила прямолинейность распространения света, на которой основывается геометрическая оптика. Но явления дифракции и интерференции в эту теорию не укладывались.

2. Волновая теория. Она гласила, что свет — это всплеск в эфире.

Концепция светоносного эфира стала в науке общепринятой, и даже когда была выдвинута атомистическая теория строения вещества, учёные от неё не отказались.

Для примера процитирую английского физика Джона Тиндаля из его «Очерков естественных наук» от 1876 года, где он говорит о концепции эфира и о причинах её принятия научным сообществом.



Джон Тиндаль


«Область, в которой происходит это световое движение, лежит совершенно вне сферы наших чувств. Световые волны требуют некоторую среду для своего образования и распространения, но эту среду, не имеющую ни вкуса, ни запаха, мы не можем также ни видеть, ни осязать. Каким же образом вообще доказано её существование? — Таким образом, что принятие неподлежащего нашим чувствам эфира объясняет все явления оптики с таким совершенством, отчётливостью и полнотою, что разум наш вполне им удовлетворяется. Что делал Ньютон, когда закон тяготения впервые проник в его ум? — Он сначала исследовал, объясняет ли этот закон все факты. Он представлял пути планет; он вычислял скорость падения луны на землю, и обнаружил, что всё это объясняется законом тяготения. На основании этого он считал закон вполне установленным; и наука подтвердила его заключение. На подобные, если ещё не более прочные, основы опирается наша вера в существование мирового эфира. Это принятие объясняет более разнообразные и сложные факты, чем те, на которых Ньютон основал свой закон. Если бы можно было указать хоть на одно явление, не согласующееся с принятием эфира, то мы должны были бы отступить от этого предположения; но до сих пор подобного явления не оказалось. Поэтому по крайней мере настолько же верно то, что пространство наполнено средой, посредством которой солнце и звёзды распространяют свою световую силу, как и то, что в нём действует та сила, которая связывает не только нашу планетную систему, но и неизмеримые небесные пространства.

Эфир, распространяющий импульсы света и теплоты, наполняет не только небесные пространства, облегает не только поверхность солнца и планет, но окружает также атомы, из которых состоят солнце и планеты. Эфир передаёт движение этих атомов, а не движение видимых частей какого — нибудь тела, и это колебание атомов есть объективная причина того, что мы ощущаем как свет и теплоту. Следовательно, атом, посылающий свои пульсации по беспредельному эфиру, подобен камертону, пересылающему свои колебания через воздух».

Логика была проста: раз звуку для распространения требуется определённая среда, значит, и свету требуется такая же среда. Космос заполнен вакуумом, в котором осутствуют атомы, точнее говоря, есть, но их очень мало. Поэтому для распространения света требуется какая-то другая среда. Вот так и придумали эфир, который якобы присутствует абсолютно везде.

В XIX веке интерес к концепции эфира резко возрос. Теория света, рассматривавшая свет как волны в эфире, одержала верх над эмиссионной теорией. Английский учёный Томас Юнг разработал в 1800 году волновую теорию интерференции и по результатам своих опытов довольно точно определил длины волн света для каждого цвета. Вплоть до начала XX века волновая оптика успешно развивалась во всех областях. Классическая волновая оптика пришла к логическому завершению, но успела поставить перед учёными труднейший вопрос: что же всё-таки собой представляет этот эфир?



Томас Юнг



Набросок Томаса Юнга двухслойной интерференции, основанный на наблюдениях волн воды


Пытаясь ответить на данный вопрос, учёные выдвигали множество гипотез, но всегда всплывала какая — нибудь теория из волновой оптики, совершенно не укладывающаяся в концепцию светоносного эфира. Некоторые учёные (в том числе, кстати, и наш соотечественник Дмитрий Менделеев) всё же придерживались теории эфира, другие же (как, например, Майкл Фарадей) относились к эфиру скептически и выражали сомнения в его существовании.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное