Электричество – самое заметное свойство нейрона. Но на самом деле в электрических разрядах, бегущих по мембране клетки, нет ничего необычного. Точно такие же электрические импульсы используются, например, клетками поджелудочной железы, которые производят инсулин – гормон, контролирующий сахар в крови. Когда эти клетки чувствуют повышение концентрации сахара, они разряжаются точно так же, как нейроны, и в результате выбрасывают свой гормон в кровь9
. Электрические разряды есть и у живых существ, вообще не имеющих нервной системы. Например, инфузория-трубач (пресноводное одноклеточное существо впечатляющей сложности и размеров – оно существенно крупнее многих многоклеточных животных) умеет резко сокращаться от прикосновения. Это опять-таки достигается разрядом, пробегающим по мембране инфузории, если ее потревожить10, 11. У губок, единственной крупной группы животных без нервной системы, электрическими волнами осуществляется координация потока воды и межклеточного обмена пищей12. Даже растения отправляют разрядами тока сообщения в пределах организма, например, реагируя на атаку гусеницы централизованным производством ядовитых веществ13. В любой ситуации, когда сигнал нужно быстро передать на большое расстояние, живые существа пользуются мембранным электричеством. Так что уникальность нейрона в чем-то другом.Мозг без электричества представить в принципе можно, просто он будет очень медленным. Без чего невозможно представить мозг, так это без синапсов. Именно синапсы, соединения между нейронами, определяют уникальные свойства нервной системы. Синапсы бывают двух типов, но знаменит из них только один, причем на первый взгляд совершенно не очевидно почему. Большинство синапсов в нервной системе называются химическими, меньшинство – электрическими.
Электрический синапс – это как раз удлинитель, воткнутый в другой удлинитель. Между двумя мембранами двух нейронов устанавливается прямой физический контакт с белковыми порами, пронизывающими обе мембраны. В результате электрический сигнал напрямую перескакивает из одного нейрона в следующий и продолжает движение.
В химическом же синапсе отростки двух нейронов сближаются, но не слипаются мембранами. Между ними остается небольшое расстояние, называемое синаптической щелью. Поэтому электрический импульс не может просто «перескочить». Для этого требуется посредник, преодолевающий пространство синаптической щели и доставляющий сигнал от нейрона к нейрону. В качестве такого посредника выступают простые химические молекулы, называемые нейромедиаторами. Они выбрасываются окончанием клетки, по которой разряд приходит в синапс (этот нейрон называется, соответственно, пресинаптическим), и принимаются окончанием следующего нейрона (он называется постсинаптическим). Почти любой нейрон выступает в качестве постсинаптического по отношению к «входящим» сигналам и одновременно пресинаптическим по отношению к «исходящим».
На первый взгляд, само существование химических синапсов кажется нелогичным. «Химически» общаются между собой клетки за пределами нервной системы. Обычная клетка, чтобы послать сигнал, выделяет в раствор сигнальные молекулы, которые лениво плывут по этому раствору и в конце концов доплывают до других клеток, которые их улавливают (так работают гормоны и многие другие похожие вещества). Казалось бы, весь смысл проведения электричества по мембране – это скорость, которой таким «химическим» способом не достичь. Зачем же тогда останавливать этот сверхбыстрый сигнал на каждом перекрестке, заставляя его превращаться в обычный, стандартный, медленный «химический» сигнал, ничем принципиальным не отличающийся от выделения гормона? Почему бы не соединить все нейроны электрическими синапсами?
Электрические синапсы могли бы быть ценнее, если бы смысл мозга заключался в быстрой передаче сигналов от органов чувств к мышцам. Вероятно, в этом и состояла изначальная эволюционная функция нервной системы: многоклеточному животному в поисках пищи необходимо быстро координировать работу далеких друг от друга частей тела. У самых простых животных, медуз например, такое проведение сигнала и сегодня можно назвать главной функцией мозга14
. Но почти у всех остальных современных групп гораздо важнее становится не само соединение органов чувств с мышцами, а то, что происходит посередине. В такой ситуации химические синапсы приобретают смысл, очевидный любому специалисту по вычислительным машинам.Цифровые компьютеры, как и мозг, работают при помощи электрических сигналов. Но