Хлорофилл всасывает энергию прилетевшего к нему фотона и от этого очень возбуждается. Примерно как Супер Марио, глотающий бонусную звезду и временно обретающий сверхспособности. Помните, как атомы и молекулы постоянно занимаются тем, что отбирают друг у друга электроны? Так вот возбужденный фотоном хлорофилл пребывает в таком радостном настроении, что с готовностью отдает электрон окружающим, вкладывая в него ту энергию, которую сообщил ему произведенный на солнце фотон.
Молекулы – существа ветреные, сами не знают, чего хотят. Им все время не сидится со своими электронами, то их мало, то их много. Но стоит всучить молекуле целый лишний электрон или вырвать у нее электрон, от которого она пытается избавиться, как ей тут же становится еще хуже – теперь она хочет этот электрон либо сбагрить, либо добыть соответственно. В случае с возбужденным хлорофиллом потеря электрона мгновенно выводит его из благотворительной эйфории, и возбуждение сменяется жестоким похмельем, при котором хлорофилл готов разорвать клетку на части, лишь бы получить обратно свой потерянный электрон.
Мы вернемся к хлорофиллу и его химической ломке через минуту, но пока давайте посмотрим, что происходит с тем электроном, который он в своем любвеобильном порыве отдал окружающим.
Дело происходит внутри растительной клетки. Как и любая клетка, она имеет клеточную мембрану, отделяющую ее от окружающего мира. Но с внутренней стороны этой главной наружной мембраны в клетке полно более мелких мембранных пузырей, трубочек и цистерн, образующих массу разнообразных полостей и пространств со специализированными функциями. Эти пузыри и полости называются органеллами, то есть мини-органами. К их числу относится хлоропласт – специальная органелла для фотосинтеза. Там и живет хлорофилл.
У хлоропласта две мембраны: наружная и внутренняя. Внутри он заполнен стопками плоских замкнутых цистерн под названием тилакоиды. Именно в их мембрану воткнут хлорофилл. То есть если считать от границы клетки, то это мембрана номер четыре: сначала клеточная мембрана, потом две мембраны хлоропласта и только потом мембрана плоского пузыря-тилакоида.
Что за компания окружает хлорофилл в мембране тилакоида? В основном это мембранные белки, которые с радостью принимают от возбужденного хлорофилла электрон и от этого сами возбуждаются. Но белки гораздо более талантливые молекулы, чем хлорофилл, и их возбуждение можно превратить в полезную работу. От энергии принятого электрона белок корежит и перекручивает, и в конечном итоге он передает эту свою электронную радость другому белку, как эстафетную палочку. Но, пока их крутит, белки проделывают любопытный пируэт: хватают с одной стороны мембраны протон (протон – это просто водород, у которого отняли электрон, такие несчастные обделенные водороды всегда есть в любом водном растворе) и сбрасывают его с другой стороны мембраны. В итоге белки возвращаются к своему исходному состоянию, но пробежавший по ним электрон переносит протон внутрь тилакоида11
.Этот процесс повторяется несколько раз с участием вспомогательных молекул, пасующих друг другу электрон, как мяч. В сумме получается следующее: выбитый светом из хлорофилла электрон прыгает по мембране с белка на белок, возбуждая их по эстафете, и в результате те постепенно накачивают тилакоид протонами. В конечном итоге электрон, запущенный возбужденным хлорофиллом по цепи, теряет энергию и соскакивает с мембраны на специальную молекулу с легендарным названием «никотинамидадениндинуклеотидфосфат» – я был очень горд собой, когда впервые выучил его в десятом классе. Там мы этот отработанный электрон и оставим, присмотревшись вместо него к тому, что происходит с накачиваемым протонами тилакоидом.
Чтобы накачать воздушный шарик, нужно приложить энергию. Что происходит с этой энергией в шарике? Она сохраняется в форме напряжения резины под давлением газа. Если шарик проткнуть, то газ устремится из зоны высокого давления внутри шарика в зону низкого давления снаружи, и энергия напряжения превратится в энергию звука, реактивного движения и всеобщего веселья[7]
.То же самое происходит с тилакоидом, который накачивают протоны. Сами они туда не полезут по той же причине, по которой шарик не накачивает сам себя. Но если приложить энергию – в данном случае она берется из скачущего по мембране электрона, выбитого из хлорофилла солнцем, – то протоны можно запихнуть в тилакоид против их воли и таким образом создать напряжение. Фактически это способ сконцентрировать энергию света. Тот факт, что в тилакоид накачиваются именно протоны, принципиальной роли не играет: важно, что перепад их концентрации создает напряжение, в котором, как в накачанном шарике, содержится энергия.