Читаем Холодильник Эйнштейна полностью

Чем объясняется наличие связи между температурой тел, подобных печи для обжига, и частотой испускаемого ими электромагнитного излучения? Чтобы ответить на этот вопрос, ученым пришлось обратиться к статистическим идеям Больцмана, а когда ответ был найден, он запустил цепочку событий, которые изменили физику.


* * *

Макс Планк, ставший катализатором этой трансформации, пришел в физику, не имея намерения произвести в ней революцию. Ему нравились универсальные законы, такие как первое начало термодинамики, которое однозначно утверждает, что энергия всегда сохраняется. Ему было не по душе предложенное Больцманом вероятностное объяснение второго начала. Планку казалось, что увеличение энтропии не должно происходить только потому, что статистически оно наиболее вероятно.

Планк считал, что, изучив свойства теплового излучения, можно составить новое представление о втором начале. Тепловой поток при конвекции или теплопроводности прекрасно объяснялся беспорядочным движением и столкновениями отдельных частиц. Тепловое излучение в форме незатухающих волн электромагнитной энергии казалось иным. Планк надеялся, что с его помощью перемещение теплоты удастся объяснить без применения законов вероятности.

Для этого Планк стал изучать, как устройства вроде печей для обжига создают электромагнитные волны, когда электроны в их стенках начинают колебаться под действием теплоты. В последние годы XIX века он усердно работал над выводом математического уравнения, которое соответствовало бы наблюдаемой связи между температурой тел вроде печей и частотами испускаемых ими электромагнитных волн.

Затем в деле случился неожиданный поворот. В 1900 году берлинские власти задумались, чем лучше освещать улицы — электричеством или газом. И электричество, и газ дают свет за счет теплоты, но какая система дешевле? Ответа ждали от Императорского физико-технического института, получавшего государственное финансирование и занимавшего в Берлине участок, предоставленный промышленником Вернером фон Сименсом. В 1900 году сотрудники института разработали устройство, которое назвали полостным излучателем.

Полостной излучатель, по сути, представлял собой печь для обжига в форме цилиндра 3,8 см диаметром и около 38 см длиной. Он позволял проводить высокоточные измерения интенсивности света на разных частотах при широком диапазоне температур.

Среди ученых Императорского физико-технического института, проводивших эксперименты с этими устройствами, был друг Планка Генрих Рубенс. Воскресным днем 7 октября 1900 года он заглянул к Планку в гости и принес как хорошие, так и плохие новости.

С одной стороны, в видимом свете и коротких ультрафиолетовых диапазонах математика Планка работала. Его уравнения точно предсказывали, сколько высокочастотного излучения испускается при нагревании полостного излучателя. С другой стороны, с более длинными волнами они работали не так хорошо. При любой заданной температуре уравнения Планка предсказывали меньше инфракрасного света, чем показывали замеры.

Рубенс также сообщил о другом открытии: английский физик лорд Рэлей нашел объяснение для низкочастотного конца спектра. Рэлей поставил перед собой такой вопрос: волны какого размера помещаются в таком устройстве, как полостной излучатель? По сути, он заявил, что для длинных волн там меньше места, чем для коротких.

Представьте туго натянутую гитарную струну. Ущипните ее ровно посередине, и зазвучит ее самая низкая — основная — нота. Ущипните ее ближе к концу, и звук окажется другим, потому что вместе с низкой нотой зазвучат и более высокие гармонические тона. Это объясняется тем, что струна может одновременно производить колебания в разных “модах”. В самой низкой моде середина струны колеблется вверх-вниз. В следующей моде струна вибрирует в форме буквы S. Затем — в форме двойной S и так далее. Эти моды называются стоячими волнами.

Электромагнитные волны также создают стоячие волны внутри полостных излучателей. Как мы помним, излучатель имеет цилиндрическую форму. Его концы подобны двум концам гитары. Разные моды помещаются в длину цилиндра, как и моды гитарной струны помещаются в длину инструмента. Однако, по мысли Рэлея, размер полостного излучателя устанавливает ограничения для более длинных волн.



Разные “моды” гитарной струны




Почему? Потому что в полостной излучатель помещается гораздо больше коротковолновых мод, чем длинноволновых. Пусть длина устройства составляет 60 см. В него поместится волна не длиннее 120 см — это первая мода с пиком в середине устройства. Длина следующей составит 60 см — это вторая мода с двумя пиками. Третьей — 40 см, четвертой — 30 см. Таким образом, в диапазоне от 30 до 120 см в излучатель поместятся лишь волны четырех длин. Теперь вычислите, волны скольких длин в диапазоне от 0,5 до 1,5 см поместятся в то же устройство. Ответ: таких длин 79.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное