Читаем Холодильник Эйнштейна полностью

Руководствуясь этой логикой, Рэлей пришел к выводу, что полостной излучатель должен испускать меньше длинноволнового излучения, чем коротковолнового. Его аргумент естественным образом вытекал из волновой природы света и, что важнее, позволял сделать математические прогнозы, соответствующие данным для низких частот.

Однако на высоких частотах этот аргумент не работал. Поскольку теоретически количество коротковолновых мод, которые помещаются в полостной излучатель, не ограничено, метод Рэлея предполагал, что даже при низких температурах он должен быть полон ультрафиолетового света и рентгеновских лучей. На самом деле такого излучения почти не было даже при самых высоких температурах.

Что это значит? Если не вдаваться в детали, математические выкладки Планка не соответствовали низкочастотной энергии, наблюдаемой в полостном излучателе, но были верны для высоких частот.

С анализом Рэлея ситуация обстояла наоборот. Его выкладки были верными для низких частот, но значительно завышали показатели для высоких.

Раздосадованный, что у него не получается объяснить эту нестыковку, Планк решился на то, что впоследствии назвал “шагом отчаяния”. “Я готов был пожертвовать любым из своих прошлых убеждений, касающихся физики”, — признался он.

К чему это привело? Посвятив работе пять лет, Планк — вопреки своим надеждам — не вытеснил статистику из термодинамики, а вынужден был расширить ее применение.

Людвиг Больцман использовал статистику, чтобы объяснить, как теплота рассеивается при столкновении атомов и молекул друг с другом. Планк обнаружил, что, лишь применив такие же статистические методы к колеблющимся электронам в стенках полостного резонатора, можно вывести уравнение, точно соответствующее результатам наблюдений. В важнейшей статье 1900 года Планк признал, что ему пришлось прибегнуть к “статистическим представлениям, важность которых для второго закона термодинамики была открыта, прежде всего, г-ном Л. Больцманом”[20]. Планк пять лет пытался доказать, что Больцман ошибается, но у него ничего не вышло.

Планку пришлось не только применить статистику, но и сделать странное допущение о физическом мире. Представьте, что внутренняя сторона резонатора (замкнутой непрозрачной полости) напоминает пещеру, где на стенах висят колокольчики, каждый из которых имеет свой тон — от низкого звона до высокого “звяканья”. Если бы пещера содрогнулась от мощного землетрясения, все колокольчики зазвенели бы примерно на одной громкости.

Подобным образом в полостном резонаторе есть осцилляторы — обычно в их роли выступают колеблющиеся электроны, которые испускают широкий диапазон электромагнитного излучения, от низкочастотных радиоволн до высокочастотных рентгеновских лучей. При повышении температуры резонатора под действием теплоты осцилляторы начинают дрожать, как колокольчики в пещере. Но здесь проявляется ключевое различие. Планку пришлось допустить, что для излучения высокочастотному осциллятору требуется гораздо больше энергии, чем низкочастотному. Если провести аналогию, то колокольчик высокого тона придется встряхнуть гораздо сильнее, чем колокольчик низкого тона, чтобы он вообще издал звук. Если бы пещера с такими колокольчиками содрогнулась от землетрясения, звон колокольчиков низких и средних тонов поглотил бы звон колокольчиков высоких тонов.

В целом Планк рассудил, что, получая большие порции энергии, осцилляторы испускают высокочастотное излучение. Для низкочастотного излучения нужны гораздо меньшие порции энергии. Представьте два осциллятора. Один может испускать инфракрасный свет, частота которого составляет 300 триллионов циклов в секунду. Второй может испускать синий свет, частота которого составляет 600 триллионов циклов в секунду. Чтобы испустить свет, второму осциллятору понадобится вдвое больше энергии, чем первому. Из этого есть и другое следствие: осцилляторы испускают свет дискретными порциями. В приведенном выше примере это значит, что наименьшая порция синего света содержит вдвое больше энергии, чем наименьшая порция инфракрасного света.

Затем Планк объединил эти идеи с больцмановской статистикой, чтобы объяснить, как горячие тела, такие как полостные резонаторы, печи для обжига и даже звезды, излучают электромагнитную энергию. Чтобы понять, как он это сделал, рассмотрим следующий мысленный эксперимент:

Представьте магазин, где синие конфеты продаются по j долларов за штуку, зеленые — по 3 доллара, а красные — по 1 доллару. В ассортименте также есть крупные, но дешевые бесцветные конфеты, которые продаются всего по 20 центов за штуку. Последних довольно мало, поскольку они занимают очень много места.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное