Читаем Хранители времени. Реконструкция истории Вселенной атом за атомом полностью

Иными словами, каждые две молекулы H2 (четыре атома Водорода в целом) связываются с одной молекулой O2 (двумя атомами Кислорода), чтобы создать две молекулы воды (два соединения H2O), и в процессе выделяют 19,2 эВ энергии. В среднем это означает, что каждая связь O – H в молекуле воды обладает энергией связи, равной 19,2 эВ/4 = 4,8 эВ. Это типично для энергий связи в сравнительно простых молекулах, которые, как правило, охватывают диапазон от 1 до 10 эВ. Одну из самых прочных простых связей мы обнаружим в молекулах Азота, составляющих большую часть нашей атмосферы – на то, чтобы разорвать связь N2, нужно затратить 9,8 эВ. И это проблема, поскольку Азот неимоверно важен для жизни растений. Растения не могут расщепить Азот, содержащийся в воздухе, и доверяют эту задачу бактериям, которые живут на их корнях, а бактерии используют Кислород как источник энергии и разрывают с его помощью связь N2, благодаря чему атомы Азота становятся пригодными для растений (см. гл. 10).

Как мы отмечали чуть раньше в этой главе, асимметричное распределение заряда в молекуле позволяет молекулам притягиваться друг к другу. У воды это притяжение сравнительно сильное и составляет 0,42 эВ на молекулу в жидком состоянии – иными словами, именно столько энергии нужно добавить, чтобы разорвать связи между молекулами воды при переходе из жидкого состояния в газ (можно выразиться иначе: чтобы вскипятить воду и получить пар). Для перехода воды из твердой фазы в жидкую (таяние льда) нужно частично разорвать связи и позволить молекулам проскальзывать друг над другом. На это уходит в семь раз меньше энергии (0,06 эВ на молекулу).

Итак, мы завершили цикл, пройдя от начала главы 3 к концу главы 4. Мы начали с того, что разделили всю материю на три группы в зависимости от ее состояния и увидели, что эти состояния, или фазы, определяются лишь прочностью связей между элементарными частицами. Теперь мы понимаем, что на превращение твердого тела в жидкость, а жидкости – в газ требуется примерно 0,05 эВ и 0,5 эВ, а для разложения частиц на соответствующие атомы – примерно 5 эВ на связь. Расщепление атомов на электроны и ядро требует от 15 до 150 000 эВ, разрушение ядра на протоны и нейтроны – 5–10 миллионов эВ, а распад протонов на кварки происходит при затрачивании 50 миллионов эВ. Шкала энергий охватывает значения, доходящие до 1 миллиарда, но принципы остаются неизменными: от кварков и лептонов до кубиков льда иерархия вещества, которой управляют четыре фундаментальных взаимодействия, связывает элементарные частицы в девяносто четыре базовых «кирпичика», придающие облик нашему миру. И хотя нам все-таки удалось разделить эти «неделимые» атомы, они стали нашими добрыми знакомыми, и мы хорошо изучили их внутренний мир и внешние связи. Теперь осталось лишь кратко поговорить о степени их родства и о времени жизни в главах 5 и 6, и мы будем готовы вместе с ними отправиться в путешествие по давно минувшим временам.

<p>Глава 5</p></span><span></span><span><p>Изотопы: разновидности элементов</p></span><span>

Теперь, когда мы обрисовали уникальный статус девяноста четырех типов атомов, из которых состоят миллионы веществ, определяющих, как выглядит наш мир, пришло время немного все усложнить: не все атомы Углерода одинаково похожи, и то же самое можно сказать об атомах Водорода, Кислорода или, скажем, Урана. Каждый из девяноста четырех элементов существует в двух или нескольких разновидностях, которые мы назвали «изотопами».

«Изос» в переводе с греческого означает «одинаковый», а «топос» – место1. Все атомы Углерода находятся на «одинаковом месте» в Периодической таблице, и, как вы помните, это означает, что у них полностью совпадают атомные номера и распределение электронов, так что они ведут себя совершенно одинаково во всех химических реакциях. Как нам уже известно, если число электронов у них одинаково, тогда одинаковым должно быть и число их протонов – только при выполнении этого условия они окажутся электрически нейтральными. Действительно, все именно так: атомный номер каждого атома Углерода – шесть, что указывает на шесть его протонов и шесть электронов.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература