Таким образом, единственный оставшийся показатель, благодаря которому мы можем отличить разновидности Углерода, – это число нейтронов, присутствующих в каждом ядре, поскольку эти частицы нейтральны и никак не влияют на электрически заряженные компоненты. И именно в числе нейтронов, присутствующих в каждом атомном ядре, мы увидим различия. Если бы вы взяли обрезок ногтя и разобрали его атом за атомом, вы бы обнаружили, что примерно 45 % в нем составляли атомы Углерода. Но если бы вы очень аккуратно отсортировали атомы по массе в крошечные ведерки, для Углерода вам понадобилось бы три. Около 98,93 % атомов Углерода оказались бы в ведерке с атомной массой в 12 а. е. м. Большая часть из оставшихся 1,07 % обладала бы массой 13 а. е. м., а примерно один атом из триллиона весил бы 14 а. е. м. Можно было бы подумать, что нечто, существующее в виде одной части из триллиона, вряд ли вообще покажется на свет, но важно помнить, что атомы
Таким образом, изотопы Углерода различаются по числу нейтронов, содержащихся в их ядре, а внешне отличия проявляются в массе атома (изначально названной «атомным весом»). Мы указываем на них, помечая символ атома массовым числом (число протонов плюс число нейтронов), которое выглядит как предшествующий надстрочный индекс: для трех самых распространенных изотопов Углерода мы получим 12
C, 13C, 14C (иногда их также записывают как C‐12, C‐13, C‐14).В общей сложности есть еще двенадцать изотопов Углерода, и они варьируются от 8
C (всего с двумя нейтронами) до 22C (который может похвастаться колоссальным числом нейтронов – их шестнадцать), но ни один из этих изотопов – ни сотворенный в лаборатории, ни возникший в природе – не отличается долгой жизнью; время жизни 11С в среднем составляет примерно 20 минут, а все остальные существуют не более 20 секунд (некоторые – намного меньше, как, например, 8С со временем жизни 0,000000000000000000002, или 2 × 10–21 с). 14С также склонен к распаду, но он разрушается достаточно неспешно, и этот срок измеряется тысячелетиями. Склонность некоторых ядер спонтанно преображаться в другой изотоп – основа радиоактивности, предмет следующей главы и ключ к датированию давно минувших событий.Поэтому мы говорим, что Углерод обладает двумя
Открытие изотопов
Точно так же, как химики в первые десятилетия XIX века ввели концепцию атомов, обладающих различной массой и характерными свойствами, физики в первые два десятилетия XX века открыли, что элементарный атом может существовать в разных состояниях массы. К 1920 году два независимых потока мысли сошлись, и было установлено существование изотопов.
Первое направление исследований затрагивало радиоактивные3
элементы, расположенные в конце Периодической таблицы, – Торий и Уран. Уран добывают из минерала под названием настуран – вещества, используемого как краситель в стеклоделии еще со времен Римской империи. В форме элемента Уран в 1789 году выделил немецкий аптекарь Мартин Клапрот, назвав его в честь Урана – первой планеты, которую в том же десятилетии, только чуть раньше, впервые наблюдал в телескоп Уильям Гершель. А в 1828 году шведский химик Йёнс Берцелиус выделил Торий – новый элемент, один из восьми4, которые он открыл в своей лаборатории за три десятилетия XIX века.