Читаем Кибероружие и кибербезопасность. О сложных вещах простыми словами полностью

А если учесть довольно высокую вероятность попадания в эти зоны метеоритов и других «вольных» космических тел (а также остатков переставших функционировать искусственных спутников Земли, обломков взорвавшихся и взорванных [2] ракет и спутников, просто космического мусора, которого сегодня на орбите исчисляется уже сотнями тысяч штук), то эта «вероятность» уже может очень скоро превратится в «реальность». Ведь в соответствии с правилами и законами «машинной» логики — каждое такое вторжение — это нарушение суверенитета защищаемой зоны объекта и ее защита немедленно будет приведена в действие.

Понятно, что в ответ на каждый такой акт «нарушения суверенитета» системы зашиты БКС будут непременно автоматически активизироваться (реакция человека здесь неприемлема — слишком малое время отводится как на фиксацию факта «агрессии», так и на ответные защитные действия), результат которых можно будет сформулировать как в известном армейском анекдоте — «сначала выстрелим, а потом спросим пароль».

Срабатывание автоматики активной системы защиты станции неизбежно должно сопровождаться «боевой активизацией» этой самой станции, зафиксировавшей факт «нападения», которая запускает автоматически систему боевого управления (для этого ее и создавали конструкторы).

Другая сторона (а реально — все «другие» стороны, вышедшие в открытый космос), неизбежно должны обнаружить техническими средствами факт активизации ПРО потенциального противника, и просто обязана считать, что он готовит первый ядерно-ракетный, лазерный или «обезоруживший» удар, и будет вынуждена экстренно принимать меры по соответствующему реагированию своих наступательных стратегических вооружений.

Понятно даже «гражданским» экспертам, что вышеописанная «цепная реакция» эскалации инцидента будет протекать настолько быстро, что не оставит никаких временных шансов для дипломатического (политического) урегулирования возникшего на «ровном месте» кризиса.

2.3. СВЧ-оружие наземного применения

2.3.1. Основные поражающие факторы и методы воздействия СВЧ-излучений на радиоэлектронную аппаратуру

Хорошо известно, что импульсы СВЧ излучения большой мощности способны выводить из строя элементы любой радиоэлектронной аппаратуры (РЭА), в первую очередь полупроводниковые элементы [2, 6]. Деградационные эффекты элементов РЭА могул быть обратимыми и необратимыми. В дальнейшем под термином «поражение» элемента будем понимать его необратимый отказ. К сожалению, богатый инженерный опыт зашиты РЭА от электромагнитных излучении [A. Belous, «High Velocity Microparticles in Space», Springer Nature Switzerland AG 2019-390, ISBN:978-3-030-04157-l] практически не пригоден для защиты от СВЧ излучения, поскольку характер воздействия импульсов СВЧ излучения существенно отличается от характера воздействия электромагнитного импульса ядер-ного взрыва. ЭМП не имеет высокочастотного заполнения (т. е. это видеоимпульс) и его спектр в основном сосредоточен в области относительно низких частот 1…100 МГц. а СВЧ импульсы генерируются на определенной несущей частоте, а их спектр лежит в пределах от единиц до сотен гигагерц. Низкочастотный характер ЭМП создает серьезные проблемы для его направленной канализации в пространстве на объект поражения, а для СВЧ излучения такая канализация легко реализуется с помощью специальных антенных систем (рупорных. зеркальных, фазированных антенных решеток), что существенно повышает уровень СВЧ мощности, действующей на РЭА. ЭМП проникает непосредственно через стенки корпуса радиоэлектронной аппаратуры, в то время как СВЧ излучение может проникать в РЭА через отверстия, стыки и неоднородности корпусов, а также через открытые разъемы отрывных кабельных линий. Поэтому оценка де-градационного воздействия СВЧ излучения на объекты, содержащие элементы и устройства вычислительной техники и системы управления. а также поиск средств и методов зашиты является сложной, но актуальной задачей.

Уровни энергии, достаточные для поражения (необратимой деградации) СВЧ излучением полупроводниковых элементов (диодов. транзисторов, микросхем) РЭА сегодня достаточно хорошо известны [7–9]. В таблице 2.2 представлены известные экспериментальные данные о величине энергии, достаточной для поражения некоторых полупроводниковых элементов в зависимости от длительности СВЧ импульса.

Например, энергия поражения р-i-n диодов, используемых в ограничителях и антенных коммутаторах радиоэлектронных средств (РЭС), лежит в пределах 5x10-5… 10-4 Дж, при длительности импульса десятки наносекунд [9]. В ряде случаев выход из строя приемного модуля РЭС определяется отказом малошумящего усилителя, который в современной аппаратуре СВЧ-диапазона проектируется на основе полевого транзистора с затвором Шоткп (ПТШ GaAs) [9]. Его энергия поражения приведена в таблице 2.2.

Таблица 2.2

Перейти на страницу:

Похожие книги

Компьютер для тех, кому за…
Компьютер для тех, кому за…

В наш век высоких технологий без компьютера не обходится практически ни один человек. Но что делать, если вам уже за…, а компьютер вы так и не освоили? Не стоит отчаиваться! Эта книга была написана специально для тех, кто по каким-то причинам не смог освоить его раньше. Легким и доступным языком в книге изложены основные принципы работы на компьютере. Вы узнаете, как создать документ в текстовом редакторе, выстроить таблицы и диаграммы в экселе, освоите графический редактор, который позволит вам рисовать и редактировать фото и рисунки, научитесь самостоятельно подключать принтер и печать, общаться с родными и друзьями по скайпу и ICQ, узнаете, какие бывают игры, как выбрать игру для себя, и многое-многое другое.Никогда не поздно осваивать что-то новое! А уж тем более — компьютер. Он откроет вам целый мир безграничных возможностей. Не упустите свой шанс узнать что-то новое и интересное — дайте компьютеру прочно войти в вашу жизнь. Ведь пользоваться им так же просто, как и обычным телефоном, только в тысячу раз интереснее!

Оксана Грибова

Зарубежная компьютерная, околокомпьютерная литература / Интернет / Программное обеспечение / Прочая компьютерная литература / Книги по IT