В одном исследовании было показано, что витамин С помогает убить опухолевые клетки за счет усиления действия свободных радикалов. Данный метод был назван фотодинамической терапией (я упоминал о нем в главе 6). Лекарственный препарат активируется под действием света, а затем отдает химическую энергию кислороду, в результате чего образуется синглетный кислород и различные свободные радикалы, атакующие опухоль. Исследователи из Университета Айовы и из Китая показали, что сочетание высоких доз витамина С и фотодинамической терапии повышает эффективность лечения. Если клинический эффект окажется значимым (пока рано об этом говорить[62]), репутация Полинга будет восстановлена.
На примере витамина С я попытался раскрыть суть действия антиоксидантов. Что же мы узнали? Первый вывод заключается в том, что витамин С выполняет одну и ту же молекулярную функцию, определенную его химической структурой. Это не химический супергерой, способный принять любое обличье и спасти нас от дьявола. Функция всех антиоксидантов ограничена их химической структурой, но это не мешает им оказывать разнообразное влияние. Второй вывод состоит в том, что простое повторяющееся действие может иметь множество физиологических проявлений. Мы видели, что витамин С служит кофактором как минимум для восьми ферментов, влияющих на самые разные функции организма — от синтеза коллагена и метаболизма жиров до реакций на стресс (синтез норадреналина) или восприятия боли (активация вещества P). Возможно, среди всех этих проявлений активности витамина С его антиоксидантные свойства изучены хуже всего. То же самое можно сказать и о многих других «антиоксидантах».
Самым ярким подтверждением антиоксидантной функции витамина С является его быстрое поглощение нейтрофилами, которые он защищает от ими же созданной волны антибактериальной атаки. Важно отметить, что нейтрофилы накапливают витамин С только при бактериальной инфекции. Такая быстрая реакция может быть связана с бессмысленностью энергетических затрат на поглощение витамина С, когда в нем нет нужды, или с его потенциальной опасностью. Это подводит нас к третьему важному выводу относительно функции витамина С: конкретное действие антиоксиданта зависит от его окружения. Играет ли витамин C роль антиоксиданта, прооксиданта или какую-то промежуточную роль, зависит от его взаимодействия с другими молекулами. Мы видели, что витамин С напрямую взаимодействует с некоторыми свободными радикалами, но также с железом, медью, витамином Е и глутатионом. Чтобы витамин C выполнял функцию антиоксиданта, каждое из этих веществ должно оказаться в правильное время в правильном месте, для чего нужнa целая сеть вспомогательных молекул. В общем и целом все эти факторы можно считать антиоксидантными. Где провести границу? Чтобы осознать, как сложно дать определение антиоксиданта, давайте завершим эту главу рассказом о поведении активированных нейтрофилов.
Концентрация витамина С в нейтрофилах может в 100 раз превышать его концентрацию в плазме крови, однако нейтрофилы поглощают не сам витамин, а только его окисленную форму — дегидроаскорбат. В мембранах нейтрофилов есть белковый насос, узнающий дегидроаскорбат и проталкивающий его в клетки. Внутри клетки дегидроаскорбат превращается в витамин С и только тогда может использоваться. Это преобразование осуществляет фермент глутаредоксин, который забирает электроны у глутатиона и регенерирует витамин С. Для непрерывной работы системы требуется постоянная регенерация глутатиона. Эту функцию выполняет фермент глутатионредуктаза с помощью электронов, которые в противном случае были бы использованы для превращения кислорода в воду в процессе клеточного дыхания. Ставка в этой игре — выживание. Физиологический баланс в нейтрофилах смещается от нормального дыхания к критическому сценарию, необходимому для регенерации глутатиона и витамина C. Другими словами, активированные нейтрофилы перестают дышать и начинают защищаться в надежде на то, что проживут достаточно долго, чтобы уничтожить бактерии[63].
Стaвки очень высоки, и непонятно,