Как я упомянул в начале главы, эти простые повторяющиеся реакции таят в себе большую опасность — это темная сторона действия витамина С. Мы уже обратили внимание на связь между витамином С, железом и кислородом. Когда витамин С реагирует с железом и кислородом, он выступает в роли донора электронов,
Когда железо находится в активном центре фермента, это сравнительно безопасно — железо там удерживается, как лошадь в шорах, которая делает только то, что ей велят. Совсем другое дело, когда железо находится в растворе. Растворенное железо может реагировать неконтролируемым образом. Мы говорили об этом в главе 6, помните реакцию Фентона? Железо реагирует с пероксидом водорода с образованием чрезвычайно активных гидроксильных радикалов и неактивного окисленного железа. Гидроксильные радикалы немедленно взаимодействуют с соседними молекулами, инициируя цепные реакции. Эти опасные реакции начинаются только в присутствии свободного железа и заканчиваются при его исчерпании. Мы видели, что опасность супероксидных радикалов заключается в их способности регенерировать активное железо, возобновляя тем самым реакцию Фентона. Делают они это путем передачи электронов. И витамин С может отдавать электроны и регенерировать активное железо. Таким образом, витамин С может не только выступать в роли антиоксиданта, но и
К сожалению, эта возможность не только теоретическая. Стандартный тест на антиоксидантную активность основан на потенциально опасной активности витамина С. Тест начинают со стимуляции свободнорадикальной реакции в препарате клеточных мембран, а затем измеряют способность антиоксидантов останавливать этот процесс. Для запуска цепной реакции используют смесь железа и витамина С: железо — для катализа, витамин — для регенерации активного железа. Если бы такая реакция происходила в организме, это была бы катастрофа.
Возникают два вопроса. Выступает ли витамин С в роли прооксиданта в организме, нанося ему ущерб? И если нет, то почему: что ему мешает? Эти вопросы вызывают в научной среде массу споров, и точных ответов мы не знаем до сих пор. Тем не менее потенциальная опасность витамина С позволяет оценить работу антиоксидантной «сети» в клетке и задуматься о том, что идеи Полинга и Камерона относительно противораковой активности витамина С, возможно, имели под собой какое-то основание.
Должен заметить, что у нас нет почти никаких подтверждений прооксидантной активности витамина С в человеческом организме. Однако некоторые наблюдения свидетельствуют, что организм знает об этой опасности. В частности, концентрация витамина в плазме крови очень строго контролируется. Даже при приеме «мегадоз» витамина его концентрация в плазме практически не изменяется. Контроль осуществляется на уровне всасывания и на уровне выведения. При приеме высоких доз витамина его всасывание в кишечнике ослабевает. Дело в том, что высокие дозы витамина оказывают слабительное действие и вызывают диарею[60]. Некоторые сторонники лечения витамином С даже призывают повышать дозу до предела «толерантности кишечника», то есть употреблять столько, сколько необходимо, чтобы спровоцировать диарею — признак достижения максимального всасывания. Такой подход не работает. При приеме 1 г витамина в сутки из кишечника всасывается менее 50%, причем бóльшая часть затем выводится с мочой. Легкорастворимый витамин С фильтруется почками и лишь отчасти подвергается обратному всасыванию, за исключением случаев острой недостаточности. Витамин начинает выделяться с мочой при приеме дозы от 60 до 100 мг в сутки. При приеме 500 мг практически все выводится этим путем. Кровь и другие жидкости организма насыщаются витамином при суточном потреблении 400 мг. Вне зависимости от того, сколько дополнительного витамина С вы примете, eгo содержание в организме не увеличится.
Эта информация важна сама по себе, но, кроме того, подчеркивает необходимость строгой регуляции уровня витамина С в организме. Пока никто не доказал, что витамин C может быть токсичен, но также никто не доказал, что он работает в организме в качестве антиоксиданта. Мы знаем, что он