Как и при любом другом способе клеточного деления, даже если в конечном итоге нужно получить лишь половинный набор хромосом, сначала каждая хромосома должна реплицироваться, в результате чего образуются две связанные между собой дочерние хромосомы. Затем на первой стадии мейоза двойные наборы хромосом спариваются и перемешиваются, как колода карт. В ходе этого процесса происходит обмен соответствующими частями спаренных хромосом. Представьте себе, что к верхней половине дамы червей присоединили нижнюю половину дамы пик или собрали костюм из брюк и пиджака от двух разных комплектов. Этот процесс называют
Таким образом, организмы, размножающиеся половым путем через процесс мейоза, имеют два важных отличительных признака. Во-первых, дети наследуют родительские гены и хромосомы в разных комбинациях. Во-вторых, такие организмы проходят в своем развитии как диплоидное, так и гаплоидное состояние.
Преимущество смешивания родительских хромосом объяснить легко. При слиянии двух гаплоидных клеток с образованием нового организма две копии каждого гена происходят от разных родителей с разным генетическим багажом и жизненной историей. Это снижает вероятность генетических нарушений или мутаций в обеих копиях каждого гена. Рекомбинация делает процесс «раздачи» генов достаточно случайным, как перетасовка колоды позволяет всем игрокам получить более или менее равноценный набор карт. Любая мутация того или иного гена у одного из родителей практически наверняка будет скомпенсирована нормальной копией гена другого родителя. Но если в результате маловероятного стечения обстоятельств потомство наследует две поврежденные копии одного и того же гена, оно уничтожается естественным отбором, избавляя популяцию от гибельных мутаций тем же путем, что и у бактерий. Таким образом, на уровне отдельных особей половое размножение является более эффективным способом сохранения целостности генетического материала при значительно более низком уровне смертности, чем бинарное деление.
Плюсы цикла между диплоидным и гаплоидным состоянием объяснить сложнее. Преимущества диплоидного состояния понятны. Диплоидная клетка с двумя эквивалентными наборами хромосом аналогична устойчивым к стрессу бактериям, накапливающим множество идентичных хромосом. Это компромиссное решение между дорогостоящим процессом создания множества одинаковых хромосом и опасностью обладания единственной копией каждого гена. Наличие двух эквивалентных хромосом позволяет исправить ошибки или восстановить разрывы в одной хромосоме, используя вторую хромосому в качестве матрицы. Однако преимущества гаплоидного состояния непонятны. Это состояние опасно, и его можно избежать, осуществляя цикл между диплоидным и тетраплоидным состояниями (с четырьмя хромосомами), которые гораздо менее опасны. Еще более странным кажется то, что гаплоидное состояние не так уж редко встречается в природе и присуще не только половым клеткам. Например, самцы многих видов перепончатокрылых насекомых, включая ос, пчел и муравьев, являются