Есть и другие данные, подтверждающие общую теорию. Между длиной теломерных последовательностей и продолжительностью жизни разных видов организмов наблюдается весьма слабая корреляция. Мышиные теломеры длиннее человеческих, хотя человек живет в 25 раз дольше мыши. А теломеры разных видов мышей с одинаковой продолжительностью жизни сильно различаются по длине. Интересно, что «нокаутные» мыши, не имеющие гена теломеразы, имеют обычную продолжительность жизни вплоть до третьего поколения, когда они начинают проявлять признаки быстрого старения. Смысл этого наблюдения пока неясен. Наконец, количество клеточных делений, необходимых для формирования тела, не влияет на последующую скорость старения. Чтобы получился слон, клетки слона делятся гораздо большее число раз, чем клетки мыши, чтобы получилась мышь, однако слон живет намного дольше мыши. Короче говоря, приходится признать, что, несмотря на весь ажиотаж, теломераза не откроет нам секрет вечной жизни. Действительно, без этого фермента бесконечная репликация клеток эукариот невозможна из-за особенностей механизма репликации ДНК. Теломераза облегчает деление клеток, как выключатель облегчает освещение комнаты; она оказывает техническую помощь. Но как выключатель не является источником света, так и теломераза не является источником вечной жизни. Почему же теломераза неактивна в эпителиальных клетках? Некоторые считают, что наличие предела числа делений может защищать от рака, но, по-видимому, дело не в этом. Предел Хейфлика очень высок. Представьте себе, что правительство Китая ограничивает рождаемость, не разрешая родителям иметь больше 70 детей. Предел Хейфлика не может предотвратить рак. Наиболее вероятная причина заключается в том, что, как большинство генов в большинстве клеток тела, ген теломеразы отключен по той причине, что в нем нет нужды.
Почему же удается превратить нормальные клетки в бессмертные просто путем введения гена теломеразы? И какое отношение ко всему этому имеют митохондрии? Я стал понимать кое-что несколько лет назад, когда занялся выращиванием культуры клеток почечных канальцев и неделями пропадал в лаборатории. Я взял несколько уроков у людей, работавших с другими типами клеток, и пытался применить их методы для решения моей задачи. Каждый раз мои чашки зарастали паукообразными клетками, которые я принимал за фибропласты, которые очень хорошо живут в культуре, и даже их небольшая примесь может победить любую другую культуру. Я выбрасывал чашки и начинал эксперимент заново, используя более подходящую технологию. Но каждый раз повторялось одно и то же. В конце концов я отправился к специалисту по фибробластам, который посмотрел на мои чашки и рассмеялся: «Это не фибробласты! Я не знаю, что это, возможно, ваши клетки почек, но это не фибробласты!»
Я был потрясен. Я часами разглядывал срезы почек под микроскопом и знал, как они выглядят: густая щеточная кайма, обеспечивающая большую площадь поверхности для всасывания растворенных веществ, и тысячи митохондрий, выстроенных по подобию римских легионеров. Мои же клетки не имели каймы и почти не имели митохондрий. Делать было нечего, и я вернулся к учебникам и статьям. И вновь неожиданность: мои грустные клетки были не чем иным, как клетками почек — именно так они выглядят в клеточной культуре! Я планировал эксперимент, чтобы проверить чувствительность клеток почек к кислороду и возможность их защиты с помощью антиоксидантов. Но когда я прочел небольшую статью, то понял, что клетки почек в культуре вообще не нуждаются в кислороде, они прекрасно существуют за счет анаэробного дыхания. Единственный способ заставить их дышать кислородом — убрать из питательной среды глюкозу и застать их в момент роста, пока они не заняли всю поверхность чашки. Наказанный, но слегка поумневший, я оставил свои эксперименты, поскольку они не отражали реальной ситуации.