Уотсон в основном работал с полосками бумаги, что позволяло контролировать условия эксперимента и сравнивать подобное с подобным. Он увлажнял бумагу до определенной степени, а затем поджигал. Он провел сотни таких экспериментов при разной степени влажности и содержании кислорода и построил графики вероятности возгорания под действием электрического разряда, скорости распространения огня и объема воды, необходимого для тушения пожара. Его результаты подтверждали наше интуитивное представление о том, что высокое содержание кислорода в воздухе усиливает горение и нивелирует влияние влажности.
В его результатах нет никакой ошибки. Но дело в том (и сам Уотсон это признает), что ответил он не на те вопросы. Бумага — плохая модель биосферы, как знает каждый, кто разжигал огонь с помощью газеты. Как мы уже отмечали в главе 4, при изготовлении бумаги из целлюлозной пульпы удаляют бóльшую часть лигнина, что значительно повышает горючесть материала. Лигнин же почти не горит — он медленно тлеет. Деревья с высоким содержанием лигнина в коре сравнительно устойчивы к действию огня. Кроме того, бумага не удерживает воду за счет осмоса, как это делают живые клетки. Поэтому содержание влаги в тонких растительных тканях, таких как листья, значительно выше, чем в бумаге такой же толщины. Уотсон определял воспламеняемость бумаги вплоть до влажности 80% насыщения, тогда как некоторые листья способны удерживать такое количество воды, которое эквивалентно 300% насыщения. При высоком риске возгорания растения часто содержат огнеупорные вещества, такие как кремний. Например, в некоторых видах соломы удивительно много кремния, что мешает сжигать сельскохозяйственные отходы. Домохозяйки прекрасно это знают: во время Второй мировой войны на оконные шторы часто наносили силикатную краску, поскольку она замедляла распространение пожара при бомбардировках.
Из всего сказанного следует неожиданный вывод: мы не знаем, в какой степени атмосферный кислород влияет на скорость распространения огня в реальных экосистемах. Я понимаю, что смесь старых консервных банок с влажной органикой взрывается при высоком содержании кислорода, как в современной атмосфере, но на основании опубликованных данных нельзя понять, действительно ли пожары могли быть неразрешимой проблемой в гипотетической атмосфере каменноугольного периода. Учитывая катастрофические последствия современных лесных пожаров, трудно предположить, что высокое содержание кислорода в прошлом не угрожало всей растительности планеты, но следует учитывать два других фактора. Во-первых, источником большинства современных пожаров является человеческая деятельность — случайная или преднамеренная. Пожаров было бы намного меньше, если бы они возникали только в результате вспышки молнии. Если в прошлом угроза пожара была выше, этот дополнительный риск уравновешивался значительно меньшим числом источников огня, и пожаров, скорее всего, было не больше, чем теперь. Во-вторых, растения обладают удивительной способностью адаптироваться к регулярным опустошительным пожарам.
Наши знания об адаптации современных растений к огню позволяют заняться поиском аналогичных адаптаций в ископаемых образцах каменноугольного и раннего пермского периода. Этому вопросу был посвящен замечательный обзор, опубликованный в 1989 г. Дженнифер Робинсон, тогда работавшей в Университете Пенсильвании. Она утверждала, что высокое содержание кислорода в атмосфере во время каменноугольного периода могло привести к адаптации к огню, что должно было отразиться в палеонтологических образцах. Если же таких следов не найдено, это может опровергать предположение о повышении концентрации кислорода. Далее Робинсон утверждала, что, хотя адаптация растений к огню не доказывает высокого содержания кислорода в воздухе, более веским аргументом было бы наличие адаптаций даже у болотных растений каменноугольного периода. Это действительно любопытно. Большинство современных болотных растений не должны адаптироваться к огню, поскольку вероятность возникновения пожаров в заболоченной местности при современном уровне кислорода в атмосфере практически равна нулю.