Вторая линия доказательств связана с более новыми метаболическими способностями, такими как фотосинтез. LUСА, судя по всему, не умел осуществлять фотосинтез. У архей не обнаружено никаких форм фотосинтеза, связанных с использованием хлорофилла. Так называемые галобактерии (семейство архей, обитающих в среде с высокой концентрацией соли) используют совершенно иную форму фотосинтеза, основанную на действии фоторецепторного пигмента бактериородопсина, напоминающего фоторецепторные пигменты наших глаз. У бактерий такая форма фотосинтеза неизвестна. Две формы фотосинтеза в бактериях и археях, по-видимому, эволюционировали независимым путем после отделения от LUCА. Если столь важные метаболические инновации, как фотосинтез, не передаются из одного домена в другой, вряд ли передаются другие формы дыхания. Таким образом, вид эволюционных деревьев не позволяет обнаружить следов обмена генами дыхательных белков между доменами.
Если обмен генами между бактериями и археями является редчайшим событием, значит, LUСА уже имел 16 генов дыхательных белков, которые затем были унаследованы различными линиями бактерий и архей. Поскольку эти гены кодируют белки, участвующие в производстве энергии из таких соединений, как нитриты, нитраты, сульфиты и сульфаты, LUCA, судя по всему, был достаточно сложным в метаболическом плане организмом. Последовательности одного из 16 генов обладают наиболее сильно выраженным сходством в клетках бактерий и архей, и именно этот ген Кастрезана и Сарасте использовали для создания портрета LUCA.
Этот ген кодирует метаболический фермент
Механизм восстановления кислорода при участии цитохромоксидазы — чудо наноинженерии. Фермент использует электроны, выделяющиеся при окислении глюкозы. Он поочередно передает четыре электрона и четыре протона на молекулу кислорода, в результате чего образуются две молекулы воды. Эта реакция противоположна реакции расщепления воды при фотосинтезе:
Реакция соединения водорода с кислородом — самая важная стадия процесса аэробного дыхания. Возможно, многие помнят демонстрацию этой реакции на уроке химии, поскольку она сопровождается взрывом. Как и во всех реакциях с участием кислорода, электроны передаются по одному. Поэтому сложнейшая задача цитохромоксидазы заключается в том, чтобы cобpать выделяющуюся энергию, но не допустить утечки свободных радикалов. И эта задача выполняется с высочайшей точностью. В митохондриях современных организмов цитохромоксидаза практически не выпускает свободных радикалов (все свободные радикалы ухитряются сбежать из других белковых комплексов электронтранспортной цепи). Благодаря способности впитывать весь кислород и превращать его в воду, не допуская выделения токсичных промежуточных продуктов, цитохромоксидазу можно считать мощнейшим антиоксидантом, не имеющим себе равных. Дополнительным преимуществом данного процесса является извлечение из молекулы глюкозы четырехкратного количества энергии по сравнению со всеми другими формами дыхания.
На протяжении многих лет эволюцию цитохромоксидазы связывали именно с ее антиоксидантным действием. Фермент изначально возник при повышении содержания кислорода в воздухе в результате фотосинтеза и только потом стал использоваться в качестве дыхательного фермента. Такой сценарий подтверждался наличием второй (несвязанной в эволюционном плане) формы цитохромоксидазы у некоторых протеобактерий, включая