На одном из предприятий выплачивались премии за экономию материалов при раскрое. Руководство предприятия однажды пригласило математиков: помогите экономно раскроить материал. Ученые посмотрели, подумали, подсчитали и выдали рекомендации, по которым отходы снизились до крайнего предела. Казалось бы, все хорошо. Но вот ведь что получилось: был утрачен принцип материальной заинтересованности рабочих. Теперь они не могли получать премию за экономию. Как же быть? Снова позвали математиков. Они изучили производство и сказали, какой принцип для данного предприятия можно положить в основу премиальной системы. Например, принцип соблюдения технологической дисциплины.
Можно привести еще сотни примеров, когда исследование операций могло бы принести большую пользу: перспективное точное планирование подготовки кадров, особенно специалистов с высшим образованием, составление графиков взаимных поставок предприятий, расстановка рабочей силы, расчет количества магазинов в жилмассивах, организация работы городского транспорта, рекламное дело и т. д. и т. п. Теперь, в век счетных машин, сфера применимости математики безгранична. Но не все это понимают. Руководители некоторых учреждений и предприятий предпочитают работать по старинке: те или иные организационные мероприятия они предпринимают лишь потому, что им кажется, что так будет правильно. Они не хотят понять, что времена интуитивного, волевого («я считаю», «я хочу») принципа принятия решений кончились. Расчет, скрупулезный, точнейший математический расчет, — вот что должно быть принципом и стилем современной работы.
— Был у меня один случай, — продолжал Воробьев. — Помните, я рассказывал о булочной? Так вот, уже теперь, когда я стал математиком, иду однажды по улице и размышляю об очередях. Среди задач этого типа есть простейший вариант, когда у касс скапливается много народу, а продавцы в это время скучают. Или наоборот: у продавцов запарка, у кассиров — пусто. Решить эту математическую задачу (а значит, ликвидировать очереди в магазинах) несложно. Для этого не нужно ни увеличивать штаты, ни тратить средства. Нужно произвести довольно простой расчет и определить наиболее правильное соотношение количества продавцов и кассиров. Именно здесь «узкое место». А в результате каждый покупатель будет экономить минимум полчаса в день…
Однажды иду по улице и вижу вывеску: такой-то торговый отдел. Дай, думаю, зайду, возьму кое-какие цифры и в свободное время посчитаю, помогу людям.
Зашел. Говорю, что я из Вычислительного центра, что нужно то-то для того-то. Гоняли меня из кабинета в кабинет, но данных так и не дали. Приняли меня, видно, за ревизора, который был особенно страшен тем, что пытался проникнуть в торговые тайны с какой-то непонятной стороны. Никто не заинтересовался моим предложением. Ушел ни с чем. А жаль…
Терпеливая пропаганда могущества новых отраслей математики, которую вели ученые, подобные Воробьеву, сделала свое дело. Прошло несколько лет, и Николай Николаевич, всегда занятой, всем нужный, уже восклицал:
— Кто только не ищет помощи у математиков! Экономисты и инженеры, географы и социологи, врачи и лингвисты! Но главное, уже не только просят помощи, сами стараются овладеть математическим аппаратом и математическими методами рассуждений. Отрадное явление!
Раньше считалось, что только представители физико-технических наук нуждаются в математике, да и сама математика рассматривалась, в конечном счете, как приложение к физике и технике. Отголоском этих сравнительно недавних времен остался термин «физико-математические науки» и распространенный предрассудок о близости и чуть ли не о совпадении математики и физики.
На самом деле, если физику можно назвать наукой об определенном круге явлений природы, то математику можно скорее уподобить языку, на котором удобно формулировать и доказывать те или иные положения. Считать, что на этом, математическом, языке невозможно выразить факты, относящиеся к биологии, или психологии, или, например, к искусству, столь же нелепо, как, скажем, предполагать, будто на языке жителей экваториальной Африки нельзя достаточно ярко описать красоты полярных сияний.
Конечно, на первых порах математический язык довольно неуклюже описывал явления биологической или социальной жизни. Но постепенно исчезала робкая неуверенность, расширялся фронт работ, появлялась мощная вычислительная техника. Сейчас уже математика заговорила уверенно, во весь голос, переубеждая неизбежных во всяком новом деле скептиков. Новые математические теории, прекрасные в своей логической завершенности, подкупающие широтой практических приложений, начинают служить биологам, социологам, экономистам.
Теперь, рассказывая о возможностях исследования операций, Н. Н. Воробьев приводит иные примеры: