Именно эту закономерность называют сейчас вторым правилом Чаргаффа
65, поскольку перечисленные выше правила взаимозависимы (то есть составляют как бы одно) и поскольку его начальная формулировка была абсолютно тождественна первому правилу (G=C, A=T). Но относилась она только к одной цепочке ДНК! «С какой стати?» – отозвался известный ученый, когда впервые услышал об этом. Второе правило до сих пор остается загадкой и известно гораздо меньше первого. Справедливости ради следует сказать, что это правило хорошо соблюдается для разделенных поли-ДНК-цепей длиной 70—100 тысяч оснований (девиация – сотые доли процента), хуже – для длин 1—10 тысяч и практически не соблюдается для длин менее 100 нуклеотидов. Именно поэтому многие специалисты объявили это правило статистическим и тривиальным. В своих весьма любопытных и отлично написанных текстах в ЖЖ , названных «Подумаешь, геном Ньютона!», замечательный, но (до поры) неизвестный Автору автор, скрывающийся под ником Galicarnax, очень внятно показывает, почему второе правило вовсе нетривиально. «Если сгенерировать длинную случайную последовательность из четырех оснований, – пишет он, – то в ней в силу статистики… количества всех четырех нуклеотидов будут примерно равны. Но в реальных геномах это не так. Там обычно либо А, либо В:
Геномы с почти равным распределением оснований – как в случайной последовательности – крайне редки
». И при этом второе правило совершенно не связано с относительным размером кодирующей части генома, поскольку «соблюдается и для ДНК человека, в которой кодирующие последовательности составляют менее 2%, и для ДНК бактерий, в которой они составляют 80—95%. Так что с белками это правило никак не связано»… Зато само по себе это правило оказалось частным случаем более общего закона, который заключается в том, что «в одной цепочке [природной] ДНК содержится примерно равное количество комплементарных олигонуклеотидов».В лабораторной практике олигонуклеотидами называют 15—25-«членники»; на их идентичности у инфицированного, например, человека и инфицирующего его вируса основана диагностика вирусной инфекции методами полимеразной цепной реакции или молекулярной гибридизации. Другой случай: обнаруженное нами in silico
66 (то есть, с применением специальных компьютерных программ геномного анализа) тождество серии коротких фрагментов (21—27 оснований) генома человека и некоторых вирусов, в том числе, герпесвирусов (Journal Theoretical Biology, 372 [2015], 12—21) дает возможность предположить причастность последних к нарушениям геномного баланса хозяина, не обязательно связанным с белковыми синтезами. В этих случаях речь идет о различных геномах и относится к совершенно другой феноменологии (к малым интерферирующим РНК, если точнее). Второе же правило описывает нуклеотидный состав единственной цепи ДНК, и размер олигонуклеотида, удовлетворяющий этому правилу, принципиально не может быть таким большим; он и вправду не превышает 9 оснований.Второе правило Чаргаффа
относится не только к ДНК-, но и к РНК-геномам также, включая однонитевые РНК– или ДНК-содержащие вирусы. Причины, его породившие, неизвестны. Наиболее распространенная гипотеза – геномные инверсии, первое, что приходит в голову. Она, тем не менее, сталкивается с трудностями, о которых мы говорить здесь не будем. Серия других описанных в этой книжке молекулярных балансов (симметрий) также с трудом поддается разумным объяснениям – разве что принимается как данность и даже как условие функционирования репродукционных механизмов живых систем. Но что озадачивает много, много, много более – это результаты оцифровки таких балансов в целочисленных параметрах, вызывающие аналогию с информационными сигнатурами – если, разумеется, относиться к ним серьезно.