Часть аминокислот обладает выраженными гидрофильными или гидрофобными свойствами. Молекулы синтезируемого полипептида сворачиваются в фиксированную трехмерную структуру. Основной параметр, определяющий это сворачивание (фолдинг) – гидрофобность или гидрофильность аминокислоты. Код очевидно не мог эволюционировать по размеру кодона; он с самого начала был триплетным, что определялось физикой комплементарных соответствий. Что до функций каждой буквы триплета, то поскольку в современном коде за гидрофобность аминокислоты отвечает центральный нуклеотид, постольку на начальных этапах эволюции кодирования направление считывания кодона, по-видимому, не имело большого значения. А общий паттерн генетического кода потребовал симметрий как условия помехоустойчивости хранения, передачи и приема информации, и соответствующие функции были делегированы краевым основаниям триплета. После установления вектора считывания кодона эти функции были, по преимуществу, отданы первым буквам, в то время, как половина третьих стала просто межкодонными разделителями, а вторая половина – дискриминаторами для продуктов с общим кодирующим дублетом. И в этом случае (то есть в случае вторых кодонных оснований) порядок
То обстоятельство, что позиции гидрофильных и гидрофобных аминокислот выходят за пределы «своей» центральной буквы в обе стороны от оси симметрии (между Т и А в этой таблице, еще раз подчеркивает значение порядка
Вернемся, однако, к молекулярной массе как таковой. Автор использовал этот параметр не только для характеристики кодируемых продуктов, но также для характеристики кодирующих оснований. Упорядочивание азотистых оснований по нарастанию массы приводит к ряду
В новой таблице хорошо разделяются кодоны октетов 1
и 2; последние образуют светлую фигуру «креста», в которой, в свою очередь, хорошо заметно симметричное – относительно центра фигуры – расположение нечетных групп вырожденности и триплетов, дополняющих в октете 2 кодирование аминокислот S, L и R, имеющих свои кодоны в октете 1.Упорядочивание кодируемых аминокислот по массе неожиданно выявляет еще одну группу симметрий, которые связаны с классом аминоацил-тРНК-синтетаз (АРСаз), присоединяющих аминокислоту к тРНК. АРСазы делятся на два класса на основе структурного сходства и способу аминоацилирования тРНК. АРСазы 1-го класса (АРСазы-1) в большинстве случаев мономеры. 76-й аденозин тРНК они аминоацилируют по 2» -ОН группе. АРСазы-2 – это, как правило, димеры. За исключением фенилаланил-тРНК-синтетазы все они аминоацилируют 76-й аденозин тРНК по 3» -ОН группе. Оба класса АРСаз содержат равное число ферментов – по десять в каждом. Кроме того, АРСазы-1 узнают «свою» тРНК со стороны так называемого «малого желобка» акцепторной миниспирали, а АРСазы-2 – со стороны «большого».
Разделим по аналогии с АРСазами-1 и -2 – соответствующие им аминокислоты также на два класса арс-1 и арс-2. При этом возникает внятная билатеральная симметрия двадцатки аминокислот: ровно половина из них (мы здесь не вдаемся в детали), синтезируется с помощью аминоацил-тРНК-синтетаз (АРСаз) I класса:
Другая половина синтезируется с помощью АРСаз II класса (нижние строки – порядковые номера аминокислот при раздельной – по классам [1—10 и 1—10] и при сплошной [1—20] их нумерации):