Вместо того чтобы воспроизводить логические цепочки человеческих рассуждений, они предложили копнуть глубже – исследовать, а затем и смоделировать носитель этой логики, потрясающий биологический процессор – человеческий мозг. Пионеры машинного обучения стали работать над созданием оригинальной архитектуры сети математических функций, которые назвали искусственными нейронами. Они улавливают входной сигнал и обрабатывают его таким образом, что на выходе этот сигнал идентифицируется. Любая операция, например распознавание образов, поддерживается комбинированным взаимодействием искусственных нейронов.
В 1957 году в Корнелльском университете психолог Фрэнк Розенблатт построил перцептрон – первую обучающуюся машину. Она является эталонной моделью машинного обучения. После обучения перцептрон способен, например, распознавать образы (геометрические фигуры, буквы). Однако перцептрон не всесилен. Система, состоящая лишь из одного слоя искусственных нейронов, имеет ограничения.
Новизна перцептрона заключалась в его способности к обучению: он автоматически регулировал веса после демонстрации каждого нового изображения, приводя их в соответствие с желаемым выходом. Перцептрон положил начало машинному обучению с учителем. Процедура обучения настраивает параметры сети таким образом, чтобы результат приближался к желаемому. После обучения машина способна даже распознавать примеры, которых она никогда не видела, – это называется способностью к обобщению. Сегодня все, что делала машина Розенблатта, выполняет простейшая компьютерная программа длиной в несколько строк.
В простейших многослойных сетях все нейроны одного слоя связаны со всеми нейронами следующего слоя. В многослойной сети первичные слои выступают в роли экстракторов признаков, которые создаются не вручную, а автоматически – в процессе обучения. Функциональность многослойных нейросетей лучше всего иллюстрируют примеры, связанные с распознаванием изображений.