Проанализируем примеры различного написания букв C и D с помощью двухслойной сети, чтобы показать, как единицы первичного слоя могут обнаруживать шаблоны, характерные для C и D. Перцептрон при решении подобной задачи ошибался, если варианты написания C и D слишком сильно различались по форме, положению или размеру. Однако если добавить еще один слой нейронов, проблема будет решена. Нейроны первичного слоя будут находить паттерны, характерные для C и D. Такие детекторы создаются автоматически, потому что в сети используется обратное распространение, которое автоматически обнаруживает отличительные особенности или шаблоны. Например, непрерывная линия с двумя открытыми концами характерна только для C. Наличие линий, образующих близкий к прямому угол, указывает на D и т. д. Первый слой ведет себя как экстрактор признаков, а второй – как классификатор, но все уровни сети обучаются одновременно.