Оптимизация – то есть улучшение маркетинговой работы с помощью анализа и тестирования – ни в коем случае не разовое действие. Это цикл постоянных улучшений, в котором вы должны измерять, анализировать, выбирать лучшие решения, а затем снова измерять, анализировать и находить самые оптимальные решения – и все повторять сначала.
Мы с вами обсудим, каким образом следует внедрять процессы, позволяющие постоянно и последовательно улучшать деятельность вашего предприятия. В ходе обсуждения вы узнаете, каким образом маленькие привлекательные цифры могут стать лучшими друзьями ваших творческих работников – маркетологов и рекламистов – и помочь им выводить на рынок именно те маркетинговые обращения, которые клиенты хотят услышать.
На каждом новом витке компании улучшают свою деятельность. Почему? Дело в том, что всякий раз у них появляется нужный для этого процесс.
Слово
Когда дело доходит до наших маленьких привлекательных цифр, то обнаружить результативные методы несложно, главное –
Понятно, что начинать надо с данных. Вы сами знаете, как часто нужные вам данные оказываются в самых разных местах. В старые времена, чтобы внедрить у крупных клиентов систему A2A, нам приходилось изучать сотни электронных таблиц в формате Excel, созданных взамен различных баз данных, – для нас это было равносильно погружению в ад. Не самое приятное место. В подобных ситуациях все, что вам остается, – это вручную сводить данные из множества электронных таблиц в один файл, который наверняка даст сбой именно в тот день, когда вам нужно будет сделать самый важный отчет.
Все это забирает невероятно много времени. Перемещение цифр из одного места в другое приводит к ошибкам, которые делают даже лучшие и самые дотошные аналитики. В случае большого объема ручной работы шансы на ошибку всегда возрастают.
В наши дни этого можно легко избежать с помощью программ, выполняющих любые задания. Работа делается только один раз – когда программист пишет код. С этого момента задача становится автоматической, то есть безошибочной. Мне доводилось видеть, как единственный программист заменял десять операторов, обрабатывавших данные вручную. Именно это мы сделали и для нашего высокотехнологического клиента. В результате мы смогли не только повысить точность данных, но и сократить продолжительность цикла работ, что позволило нам потратить больше времени на аналитическую работу с имевшейся информацией.
На этапе анализа вы определяете, что сработало, а что нет. Мы постоянно занимаемся изучением и переосмыслением данных, основываясь на новых вопросах, возникающих у наших клиентов, сотрудников творческих профессий, планировщиков, управляющих по работе с клиентами и аналитиков. При возникновении нового вопроса мы формулируем гипотезы, а затем находим данные по последним рекламным кампаниям, которые помогают нам подтвердить или опровергнуть эти гипотезы.
Приведу пример. Так как многие продукты нашего клиента достаточно сложны с технической точки зрения, компания часто использует интернет-трансляции, в которых объясняются все необходимые детали. Чтобы просмотреть такую трансляцию, посетитель должен заполнить форму и оставить свою контактную информацию, что позволяет продавцам компании впоследствии с ним связываться. Одна из наших гипотез заключалась в том, что продолжительность интернет-трансляции оказывает прямое влияние на долю регистрации (то есть отношение людей, которые заполняют регистрационную форму, ко всем людям, которым были разосланы приглашения просмотреть трансляцию). В частности, мы считали, что у роликов продолжительностью свыше одного часа будет более низкая доля регистрации. Мы проанализировали исторические данные и пришли к выводу, что так оно и бывает. У коротких видеороликов доля регистрации была почти в два раза выше, чем у длинных. Поэтому мы рекомендовали компании ограничить продолжительность каждого ролика одним часом.
Мы видим, что даже простые вещи могут приводить к значительным последствиям, особенно если учитывать количество интернет-трансляций, которые компания ежегодно выводит на рынок.
Суть в том, что вы можете протестировать все что хотите.