ШАГ 3. Нужно перейти от координат l1900
, b1900 к вспомогательным координатам l1, b1, которые также связаны с эклиптикой 1900 года. Но точка отсчета долгот для них другая, а именно, совпадает с точкой пересечения эклиптики 1900 года и эклиптики эпохи t, то есть П1900 и П(t).Этот переход осуществляется по формулам:
l1
(t) = l0(t) — φ,b1
(t) = b0(t),φ = 173°57′38,436″ + 870,0798″ t + 0,024578″ t2
.Дуга φ между точкой весеннего равноденствия 1900 года на эклиптике П1900
и точкой пересечения П1900 и П(t) получается по формуле (1.5.1), если положить s0 = -1 и θ = -t. Тогда эклиптика П(s0) на рис. 1.5 будет соответствовать эклиптике П1900. При этом эклиптика П(s) на рис. 1.5 будет изображать эклиптику интересующей нас эпохи t. Действительно, время t отсчитывается в столетиях от 1900 года н. э. назад, а разность θ = s — s0 отсчитывается в столетиях от эпохи s0 вперед. Поскольку мы взяли s0 = -1, что соответствует 1900 году н. э. (2000 — 100 = 1900), то необходимо выбрать θ = -t, чтобы в формуле (1.5.1) эпоха s = s0 + θ соответствовала бы интересующей нас эпохе t.ШАГ 4. Затем следует перейти от координат l1
, b1 к координатам l2, b2. Это — сферические координаты, связанные с эклиптикой П(t) и отличающиеся от эклиптикальных координат lt, bt лишь выбором точки отсчета долгот. В координатах l2, b2 такой точкой является все та же точка пересечения эклиптик П1900 и П(t). Формулы перехода от l1, b1 к l2, b2 совпадают с формулами (1.5.5). Но только вместо ε0 надо взять угол ε1 между эклиптиками П(t) и П1900:ε1
= — 47,0706″ t — 0,033769″ t2 — 0,000050″ t3.Это выражение получается из формулы (1.5.2) при s = -1 и θ = -t.
ШАГ 5. Наконец, надо перейти от координат l2
, b2 к эклиптикальным координатам lt, bt. Переход осуществляется по формуламlt
= l2 + φ + ψ, b1 = b2,где φ определено в (1.5.6), а ψ задается формулой (1.5.4) при s0
= -1, θ = -t, то естьψ = -5026,872″ t + 1,1314″ t2
+ 0,0001″ t3.Последовательность описанных выше шагов 1–5 иллюстрируется на рис. 1.6.
Заметим в заключение, что все расчеты, необходимые для датировки звездного каталога, можно провести и без учета теории Ньюкомба-Киношиты. Подробнее об этом мы скажем ниже. Теория Ньюкомба-Киношиты используется нами здесь лишь для получения вспомогательной информации относительно сделанной составителем каталога погрешности в определении плоскости эклиптики. Значение этой погрешности является дополнительным фактором, по которому можно судить о правильности наших выводов. См. главы 6 и 7.
6. Астрометрия
Старые астрономические измерительные инструменты XV–XVII веков
С общей идеей угломерного астрономического прибора мы познакомились в разделе 3. Важной ее особенностью является возможность достаточно точного определения линии экватора на небесной сфере.
Пусть взгляд наблюдателя направлен вдоль луча НК', который при своем суточном вращении движется по линии небесного экватора, не уклоняясь от нее. Установка луча НК' будет, конечно, зависеть от географической широты. Можно указать плоскость HLM, ортогональную квадранту, которая параллельна плоскости экватора и пересекает небесную сферу в точности по небесному экватору, рис. 1.7. Таким образом, в данной точке земной поверхности можно построить стационарный прибор, ориентированный по меридиану север-юг, позволяющий визуально отметить на небесной сфере экватор. Это позволяет надежно отсчитывать экваториальные широты звезд, например, в момент их прохождения через вертикальную плоскость квадранта. Как мы уже отмечали, для астронома-профессионала XIV–XVI веков измерение экваториальных широт не должно было представляться сложной операцией. Оно требовало лишь аккуратности и достаточного времени для наблюдений. В частности, следует ожидать, что тщательный наблюдатель не мог сделать большой систематической ошибки при определении склонений звезд в данный год.
Теперь посмотрим, как описанная выше общая и простая идея реализовалась в реальных средневековых инструментах.