Читаем Книга о самых невообразимых животных. Бестиарий XXI века полностью

Конечно, глазные (светочувствительные) пятна не обеспечивают животное энергией, но они помогают своему хозяину – вначале это, скорее всего, были одноклеточные организмы – чувствовать суточные ритмы, находить более светлые (или более темные) места, где больше вероятность найти добычу (или встретить хищника), а также места, где можно получить больше солнечного света. И такие способности, даже если на первый взгляд они кажутся довольно скромными, дают значительное преимущество над теми организмами, у которых глазных пятен нет. Конечно, различия между глазным пятном, способным просто воспринимать свет, и настоящим глазом, формирующим четкое изображение, очевидны. Сложно даже представить, как глаз мог развиться из глазного пятна без вмешательства какого-нибудь инженера. Научные данные, однако, убедительно демонстрируют, что незначительные изменения от поколения к поколению, позволяющие постепенно совершенствовать способность собирать информацию о внешнем мире (например, более четкое определение источника света), помогают организму выжить, а значит, во многих случаях проходят естественный отбор. Совсем необязательно с самого начала «держать в голове» цель получить полностью сформированный глаз с фокусирующим хрусталиком. Можно предположить, что глаз развился из самых простых светочувствительных пятен всего за 400 000 поколений, то есть менее чем за полмиллиона лет.

Возможно, первые светочувствительные пятна появились у жгутиконосцев, похожих на современных, например, на эвглену зеленую (Euglena gracilis – разновидность динофитовых водорослей), глазные пятна позволяют ей определять наличие необходимого для фотосинтеза света. Оказываясь в недостаточно освещенной среде обитания, эвглена может питаться как обычное животное.

Обладатель самых маленьких глаз на планете – жгутиконосец эритропсидиум (Erythropsidium) – всего 50–70 мкм в поперечнике, то есть меньше диаметра человеческого волоса.

Несколько больше вопросов вызывает процесс появления глаз у многоклеточных животных. Неизвестно, как выглядели эти животные. (Очень необычную идею предложила Линн Маргулис, биолог и одна из создателей гипотезы Геи: в начале кембрия или незадолго до того некое многоклеточное животное съело жгутиконосца с глазными пятнами и встроило эти пятна в свой организм!). Точно можно сказать лишь, что все многообразие глаз современного животного мира имеет общее генетическое происхождение: ген, отвечающий за развитие глаза у мыши, Pax6, можно пересадить эмбриону плодовой мушки, и эмбрион сформирует глаз в месте пересадки.

Появление гена Pax6 предшествует появлению глаз и даже нервной системы; очень похожие гены были обнаружены у губок.

Первые обнаруженные на данный момент ископаемые с глазами, способными формировать четкие образы, датируются периодом примерно 543 млн лет назад{22}. Это сложные глаза, похожие на глаза современных насекомых и ракообразных, и принадлежали они трилобитам – классу членистоногих, напоминавших мечехвоста или гигантскую мокрицу. Хрусталики – из кристаллов кальцита, практически идентичного материалу, формировавшему наружный скелет животного, только прозрачные – были твердыми и потому не могли менять фокус, подобно мягкому хрусталику в глазах человека или осьминога. Но они обеспечивали достаточную глубину резкости, так что изображение объектов на довольно большом диапазоне расстояний было довольно четким.

Многие животные кембрийского периода были прожорливы, так что преимущества развитого глаза очевидны: они давали возможность видеть как добычу, так и преследователя. Только у шести из 36 типов животных появились глаза, способные формировать изображения: это членистоногие (ракообразные, насекомые, пауки), стрекающие (в частности, некоторые медузы), моллюски (улитки, осьминоги и др.), кольчатые черви (нереиды), онихофоры (бархатные черви) и хордовые (от миксин до человека) – именно представители этих типов играют ведущую роль в своих экосистемах, и именно им в основном удалось дожить до настоящего времени.

Перейти на страницу:

Похожие книги