Практически сразу стало ясно, что для истинно космического полёта требуется удельный импульс побольше. В принципе, мне это было ясно ещё очень давно, наверное, ещё в начале 19ого века, но теперь это стало ясно многим другим нашим учёным. При этом, мне было известно, что простых путей сильного увеличения удельного импульса нет. И только работы по созданию атомного ракетного двигателя, что велись в параллельной лаборатории, могли бы дать какой-то больший эффект. Но атомный ракетный двигатель обречён иметь большую массу, и не может выдать скорость истечения из сопла выше 9000 метров в секунду, в связи с диссоциацией водорода, начинавшейся при температуре выше 3500К, и недостаточно высокой температурой плавления веществ. При этом, атомный ракетный проект уже сейчас использовал для создания теплообменников графит, имевший рекордно высокую температуру плавления 4100К. Лучшие марки графита, обладали свойством упрочнения при нагреве. В связи с чем, нагретый свыше 2000К графит терял ломкость, приобретал пластичность и свойства низкокачественной стали. Что после прогрева, позволяло его использовать для создания твэллов нагревателя атомного двигателя. Тем не менее, в атомном ракетном двигателе твэллы из графита, передавали от атомного реактора тепло к чистому водороду и вопреки опасениям невежественных идиотов, никакого радиоактивного выхлопа у ядерного ракетного двигателя не было, потому что передача тепла водороду идёт через теплообменник. Чистый водород, это, кстати, лучший газ, как рабочее тело, он имеет газовую постоянную R=4157 Дж/кг*К, в то время как, например, продукты сгорания керосина имеют примерно R=320, в связи с чем, при подстановке этих значений в формулу удельного импульса, можно получить. Что при температуре 3500К удельный импульс чистого водорода достигает 11000м/с в пустоте, и 9500м/с на уровне моря. За счёт неидеальности камеры сгорания и газодинамических потерь, эта величина была чуть меньше, к тому же, температуру на твэллах старались не поднимать выше 3100К, опасаясь разрушения двигателя, и по факту температура была значительно ниже. В то время как удельный импульс керосина составляет при тех же параметрах 3600 и 3000. Увы, имея удельный импульс достаточный для дальних космических полётов, ядерный ракетный двигатель имел большую массу, и малую тягу. Так атомный двигатель, имевший массу 5 тонн, имел тягу 20тонн, то есть 25% тяги приходилось на отрыв от Земли самого двигателя. На первый взгляд может показаться, что это много и достаточно для полёта, но не стоит забывать, что этой тяги должно хватить, с запасом на старт, то есть на 20 тонн тяги можно иметь груз не более 15 тонн. И тогда после вычета массы самого двигателя, остаётся лишь десять тонн на рабочее тело или топливо, и на полезный груз. Зная что, часть массы составит сама ракета и масса бака, можно догадаться, что на самом деле атомный ракетный двигатель для старта с Земли и набора космической скорости не годится и может быть использован только для совершения манёвров уже на орбите, в качестве двигателя малой тяги. Это не позволяло совершить отрыв космической ракеты с грузом от Земли на таком двигателе. В то время как менее совершенные двигатели на горении имели большой запас тяги. Так двигатель на керосине с тягой 440 килограмм, сам имел массу около 15 килограмм, что составляло лишь 3,5% от его тяги. В итоге проблем с созданием ракеты на керосине и кислороде не было никаких. И не стоит при всём при этом забывать, что сам ядерный двигатель, имея огромную массу, тем не менее, был крайне опасен для эксплуатации. То есть падение атомного реактора на Землю и его последующее неизбежное разрушение привели бы район падения к экологической ядерной катастрофе, которую уже не исправить никак. Естественно, это делало невозможным многократное использование ядерных двигателей на водороде.