Hales Thomas,
et al. A Formal Proof of The Kepler Conjecture // Forum of Mathematics, Pi. Vol. 5. e2 (2017).Hermann Karl Moritz,
et al. Teaching Machines to Read and Comprehend // Advances in Neural Information Processing Systems. NIPS Proceedings (2015).Ilyas Andrew,
et al. Query-Efficient Black-Box Adversarial Examples // arXiv:1712.07113 (2017).Khalifa Ahmed, Gabriella A.B. Barros
and Julian Togelius. DeepTingle // arXiv:1705.03557 (2017).Koren Yehuda, Robert M. Bell
and Chris Volinsky. Matrix Factorization Techniques for Recommender Systems // Computer Journal. 2009. Vol. 42 (8). P. 30–37.Li Boyang
and Mark O. Riedl. Scheherazade: Crowd-Powered Interactive Narrative Generation // 29th AAAI Conference on Artificial Intelligence (2015).Llano Maria Teresa,
et al. What If a Fish Got Drunk? Exploring the Plausibility of Machine-Generated Fictions // Proceedings of the Seventh International Conference on Computational Creativity (2016).Loos Sarah,
et al. Deep Network Guided Proof Search // arXiv: 1701.06972v1 (2017).Mahendran Aravindh
and Andrea Vedaldi. Understanding Deep Image Representations by Inverting Them // Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015. P. 5188–5196.Mathewson Kory Wallace
and Piotr W. Mirowski. Improvised Comedy as a Turing Test // arXiv:1711.08819 (2017).Matuszewski Roman
and Piotr Rudnicki. MIZAR: The First 30 Years // Mechanized Mathematics and Its Applications. 2005. Vol. 4. P. 3–24.Melis Gábor, Chris Dyer
and Phil Blunsom. On the State of the Art of Evaluation in Neural Language Models // arXiv:1707.05589v2 (2017).Mikolov Tomas,
et al. Efficient Estimation of Word Representations in Vector Space // arXiv:1301.3781 (2013).Mnih Volodymyr,
et al. Playing Atari with Deep Reinforcement Learning // arXiv:1312.5602v1 (2013).Mnih Volodymyr,
et al. Human-Level Control through Deep Reinforcement Learning // Nature. 2015. Vol. 518 (7540). P. 529–533.Narayanan Arvind
and Vitaly Shmatikov. Robust De-anonymization of Large Datasets (How to Break Anonymity of the Netflix Prize Dataset) // arXiv: cs/0610105 v2 (2007).Nguyen Anh Mai, Jason Yosinski
and Jeff Clune. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images // Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015. P. 427–436.Pachet François.
The Continuator: Musical Interaction with Style / presented at the International Computer Music Conference // Journal of New Music Research. 2002. Vol. 31 (1).– and Pierre Roy
. Markov Constraints: Steerable Generation of Markov Sequences // Constraints. 2011. Vol. 16. P. 148–172.–, et al. Reflexive Loopers for Solo Musical Improvisation / presented at the ACM SIGCHI Conference on Human Factors in Computing Systems (2013).
Riedl Mark O
. and Vadim Bulitko. Interactive Narrative: An Intelligent Systems Approach // AI Magazine. 2013. Vol. 34. P. 67–77.Roy Pierre, Alexandre Papadopoulos
and François Pachet. Sampling Variations of Lead Sheets // arXiv:1703.00760 (2017).Silver David,
et al. Mastering the Game of Go with Deep Neural Networks and Tree Search // Nature. 2016. Vol. 529 (7587). P. 484–489.Stern David H., Ralf Herbrich
and Thore Graepel. Matchbox: Large Scale Online Bayesian Recommendations // WWW ’09: Proceedings of the 18th International World Wide Web Conference. 2009. P. 111–120.Tesauro Gerald,
et al. Analysis of Watson’s Strategies for Playing Jeopardy! // Journal of Artificial Intelligence Research. 2014. Vol. 47 (1). P. 205–251.Torresani Lorenzo, Martin Szummer
and Andrew Fitzgibbon. Efficient Object Category Recognition Using Classemes // Computer Vision: ECCV 2010. Springer, 2010. P. 776–789.Wang C.,
et al. Relation Extraction and Scoring in DeepQA // IBM Journal of Research and Development. 2012. Vol. 56 (3:4). 9:1–9:12.Weiss Ron J.,
et al. Sequence-to-Sequence Models Can Directly Translate Foreign Speech // INTERSPEECH 2017, 2625–2629 (2017).Yu Lei,
et al. Deep Learning for Answer Sentence Selection // arXiv:1412.1632v1 (2014).Zeilberger Doron
. What is Mathematics and What Should It Be? // arXiv:1704.05560v1 (2017).Курсы лекцийEremenko Kirill
. Hadelin de Ponteves and the SuperDataScience Team. Machine Learning A – Z // Udemy.