Целью курса было объединить предметы, которые студенты изучили, такие как электромагнетизм, термодинамика, оптика и так далее. Но главной задачей было преподать основы спектроскопии, а именно современную атомную теорию. Среди немногих учеников, посещавших этот курс, присутствовали двое новичков: Фейнман и один молодой человек, уроженец Саратога-Спрингс, штат Нью-Йорк, Теодор А. Велтон. Они быстро стали друзьями: Велтон говорил, что он знал теорию относительности Эйнштейна, а Фейнман изучил квантовую механику, читая книгу некоего Дирака. Другие студенты курса очень скоро заметили, что эти двое были весьма одаренными учениками. В курсе введения в теоретическую физику Фейнман узнал небольшой математический прием, сыгравший ключевую роль в его манере исследования. Однако, в отличие от своих товарищей, он отнесся к данному приему довольно прохладно, когда услышал о нем впервые.
Спасатель и купальщик
Давайте представим спасателя на пляже, удобно сидящего на своем стуле и вглядывающегося в океан. Вдруг в свой бинокль он замечает в воде купальщика, который зовет на помощь. Какой дорогой можно добраться до него быстрее всего (рисунок 5)? Прямая линия, как мы все знаем, является самой короткой, однако спасатель проведет слишком много времени в воде, в которой он будет передвигаться не так быстро, как бегом по песку. Самым оптимальным путем был бы тот, что требует меньше всего времени на пребывание в воде (который идет перпендикулярно к берегу). Однако даже в этом случае спасатель слишком долго добирался бы до купальщика, так как дополнительная дистанция, которую нужно преодолеть на пляже, скомпенсировала бы время, выигранное при быстром беге. Самая выгодная по времени дорога лежит где-то между двумя рассмотренными нами.