Несколькими веками ранее французский математик Пьер де Ферма (1601-1665) нашел математическое решение для этой задачи. Он сформулировал принцип, который делал возможным иной подход к вопросам распространения света: принцип наименьшего времени. Некогда Ферма на самом деле столкнулся с дилеммой, похожей на проблему спасателя. По какой траектории будет двигаться свет, когда он проходит через границу раздела двух сред, имеющих разную плотность? Мы все знаем, что ложка, опущенная в стакан с водой, кажется сломанной: это и есть феномен преломления. В этом случае свет ведет себя таким же образом, как и спасатель: его скорость в воде меньше, чем в воздухе, что и приводит к эффекту «искажения». В 1621 году голландский астроном Виллеброрд Снелл ван Ройен рассчитал угол отклонения светового луча на границе двух прозрачных сред. Этот закон, более известный как закон Снеллиуса, в дальнейшем будет изучаться всеми лицеистами. Формулируя свой принцип, Ферма доказал, что свет подчиняется данному закону, потому что он всегда выбирает самый быстрый путь, чтобы пройти*между двумя пунктами, как и наш спасатель.
Но разве можно утверждать, что любая вещь перемещается, следуя принципу наименьшей затраты времени? Распространяется ли этот принцип на движение футбольных мячей, пушечных ядер или астероидов? Или существует какой-либо иной параметр, нежели время, который так же минимизируется, когда объект совершает какое-то перемещение? Этот параметр установил французский ученый Пьер Луи Моро де Мопертюи в 1744 году. С его именем связан новый, почти магический способ понимать движение тела без необходимости использовать законы движения Ньютона. Фейнман открыл для себя данный закон в школе благодаря своему преподавателю физики М. Бадеру:
Представим себе баскетбольный мяч, летящий к кольцу. Благодаря законам Ньютона мы можем рассчитать, какова будет его траектория, анализируя действующие на него силы. С принципом наименьшего действия это больше не понадобится: достаточно наблюдать за энергией мяча в каждый момент времени. Мы знаем, что мяч, находящийся на некоторой высоте над полом, обладает потенциальной энергией. А для того чтобы перемещаться с определенной скоростью, ему необходима кинетическая энергия. Давайте подсчитаем кинетическую энергию в каждый момент движения и вычтем из нее потенциальную энергию. Далее вычислим сумму всех полученных результатов: итоговую величину принято называть действием. Принцип наименьшего действия гласит, что истинной траекторией мяча будет та, действие которой будет всегда иметь самое маленькое значение. Для любой другой траектории действие всегда будет больше действия реальной траектории. Мопертюи выразил это очень образно: «Природа бережлива во всех своих действиях».