Читаем Когда фотон встречает электрон. Фейнман. Квантовая электродинамика полностью

B. То, что наблюдаем в действительности.

Модель Томсона предполагает, что электроны распределены внутри положительно заряженного атома как «изюм в пудинге». Эксперимент, проведенный Резерфордом, в котором альфа- частицы отскакивают в момент удара от атомов золотой пластинки, может быть объяснен, только если большая часть массы атома сконцентрирована в очень маленьком объеме, в виде ядра, и имеет положительный заряд.

Наука сумела выйти из этого тупика благодаря блестящему датскому физику Нильсу Бору (1885-1962). В 1911 году Бор приехал в Великобританию с переводом своей диссертации на английский язык и стипендией Фонда Карлсберга для работы в Кавендишской лаборатории. Сразу же по приезде он поспешил в офис руководителя лаборатории Джозефа Томсона, захватив с собой одну из книг ученого о структуре атома. Отметив отрывок во вступлении, Нильс Бор прямо ему сказал: «Это неверно!» В следующем году он переехал в Манчестер, чтобы работать с Резерфордом, а в 1913 году Бор опубликовал свои постулаты, снявшие противоречия между планетарной моделью и электродинамикой. Ученый утверждал, что существуют орбиты, на которых электрон не будет терять энергию; при переходе от одной подобной орбиты к другой электрон излучает или поглощает (в зависимости от того, удаляется он или приближается к ядру) фотон, энергия которого равна разности энергий этих дозволенных орбит. Такое радикальное предположение означает разрыв с классической электродинамикой. Но в то же время благодаря ему стало возможным объяснить спектр атома водорода.

Публикация статьи Бора ознаменовала начало конца классического представления о мире, но худшее было еще впереди. Эйнштейн доказал, что свет имеет двойственную природу: он распространяется как непрерывные волны, но при поглощении и излучении ведет себя подобно частицам. В 1924 году француз Луи де Бройль дополнил это утверждение гипотезой о волновом характере материи: частицы (например, электрон) при соответствующих условиях могут вести себя как волны.

После Первой мировой войны де Бройль начал работать со своим братом Морисом над исследованием рентгеновских лучей. Именно здесь проявились его страсть к физике и интерес к революционным идеям Планка, Эйнштейна и Бора. Для своей докторской диссертации он выбрал исследование двух самых известных уравнений, с которых начинался новый век: Е =mc2 (теория относительности Эйнштейна) и Е = hv (квантовая гипотеза Планка). Эти выводы оставили членов комиссии ошеломленными, но они вряд ли поняли все их значение: де Бройль утверждал, что любой частице, в том числе и электрону, соответствует своя длина волны, которую можно обнаружить и измерить экспериментальным путем.

Согласно основному выводу из его гипотезы, если электроны ведут себя как волны, они должны в каких-то случаях вести себя подобно свету. Самое удивительное, что еще в 1920 году подобное явление наблюдал физик Лаборатории Белла Клинтон Джозеф Дэвиссон. Он пропускал пучок электронов через пластинку из кристалла никеля и заметил некоторое постоянство в их рассеянии. Но только в 1927 году он понял, что речь шла о феномене дифракции электронов.

При помощи своей революционной идеи де Бройль получил и другой важный результат: он смог объяснить существование орбит электронов, о которых говорил Бор в своих постулатах. Результаты, которые легли в основу его диссертации, были опубликованы де Бройлем в нескольких небольших статьях, вышедших между сентябрем и октябрем 1923 года в журнале Compte Rendus Французской академии наук. Его идеи распространились тогда с быстротой молнии. Нидерландский физик Хендрик Лоренц писал в то время Эйнштейну: «Это первый слабый проблеск надежды в худшей из наших головоломок».

Наука нуждается в воображении, но воображение находится в ужасной смирительной рубашке знания.

Ричард Фейнман

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки