Следующий шаг был сделан в 1925 году молодым немецким физиком Вернером Гейзенбергом. Он защитил свою докторскую диссертацию двумя годами ранее в Мюнхене, и его пренебрежение экспериментальной физикой, к слову сказать, принесло ему некоторые проблемы во время устного экзамена. Гейзенберг пришел к мысли, что для настоящего прогресса в физике следует отказаться от любой попытки «понять» внутреннюю работу атома. Он считал, что в теории, согласно которой электроны вращаются вокруг ядра, нет никакого смысла, так как никто их никогда не наблюдал. А вот фотоны, выпущенные электронами во время смены «орбиты», доступны для наблюдения, и только такого рода доказательства следует принимать во внимание для развития теории. В результате Гейзенберг создал матричную механику, с помощью которой он смог подтвердить выводы квантовой теории Бора. Почти в то же время, в 1926 году, австрийский физик Эрвин Шрёдингер осуществил синтез идей де Бройля и Гейзенберга, создав волновую механику, которая стала одним из основных «инструментов» физиков-теоретиков. По сути, волновая механика и матричная механика представляли собой разные формулировки одной и той же квантовой теории. Идеи Шрёдингера не понравились Гейзенбергу: они оставляли место для предположений, что эти «волны» реальны. Баталия между сторонниками двух формулировок достигла своей крайней степени, когда Макс Борн доказал, что эти математические инструменты служат только для расчета вероятности найти электрон в конкретной точке пространства. Все закончилось, когда Поль Дирак окончательно доказал, что Гейзенберг и Шрёдингер оба правы: их видения атомного мира были равноценны и легли в основу того, что мы называем квантовой механикой.
Начиная с этого момента разрыв с классическим миром — миром, который можно было увидеть невооруженным глазом, — стал окончательным. Квантовая механика предлагала иное видение: тело не находится в определенном месте, существует лишь некоторая вероятность, что оно там есть. А значит, тело может находиться в любой части Вселенной. Даже понятие причинности исчезает, и остается только вероятность. Мы можем кидать мячик о стену столько раз, сколько захотим, но нельзя утверждать, что он будет постоянно отскакивать: это утверждение только возможно верное. Всегда существует некоторая вероятность того, что мячик начнет двигаться совсем в другом направлении. На самом деле, как говорит об этом Фейнман в своих знаменитых лекциях по физике, «очень мелкие предметы ведут себя не так, как вы ожидаете на основании своего повседневного опыта». Нужно заплатить очень высокую цену, если желаешь понять секреты материи.
Опыт с двумя щелями
Ричард Фейнман утверждал, что этот опыт скрывает в себе тайну и волшебство квантовой теории:
«[Это] явление, которое невозможно, абсолютно невозможно объяснить с помощью классической теории и которое содержит в себе самую суть квантовой механики. Здесь коренится тайна».
В 2002 году журнал Physics World опросил физиков, какой из экспериментов в истории, по их мнению, был самым красивым: первое место занял эксперимент с двумя щелями. Но более удивительным является то, что между теоретическим обоснованием и практической реализацией этого опыта прошло 30 лет. Изначально имел место мысленный эксперимент. А в 1961 году, когда квантовая теория уже хорошо себя зарекомендовала, немецкий физик Клаус Йонссон из Тюбингенского университета провел опыт и опубликовал данные в журнале Zeitschrift fur Physik.
Впервые подобный эксперимент был поставлен в 1801 году, когда английский ученый Томас Юнг изложил идею об интерференции света. Один из опытов состоял в том, чтобы осветить пластинку, в которой были сделаны две маленькие щели, и наблюдать интерференционную картину, которая появлялась на экране, расположенном сзади (рисунок 3). Каждая щель сама становится источником света; взаимодействуя друг с другом, эти источники образуют видимую интерференционную картину на экране. Вот наблюдаемый на экране результат: освещенная полоса в центре экрана, точно посередине между двумя щелями, темные полосы с двух сторон от нее, и дальше в обе стороны продолжается чередование освещенных и темных полос, причем чем дальше от центра, тем менее яркими становятся освещенные полосы. Это и называют картиной интерференции (рисунок 3): рисунок, способный появиться только при условии, что свет распространяется как волна, — идея, которую Юнг противопоставлял мнению Ньютона.