Читаем Когда прямые искривляются полностью

СФЕРИЧЕСКИЙ МИР РИМАНА

С обычным воздушным шариком можно провести интересный эксперимент, который поможет лучше понять геометрию Римана. На плоском ненадутом воздушном шарике нарисуйте отрезок прямой линии и измерьте его длину. Рядом с ним нарисуйте треугольник. Если теперь шарик надуть, то рисунки на его поверхности трансформируются. Как выглядят теперь отрезок и треугольник? Остался ли отрезок прямым? Равна ли сумма углов в треугольнике 180°?



На надутом воздушном шарике прямая превращается в кривую, называемую геодезической линией, которая является большим кругом на сфере. Риман не мог провести этот простой, но наглядный эксперимент. В его время воздушные шарики еще не были изобретены.

* * *

Там же Риман добавляет:

«Следовательно, бесконечной прямой не существует, потому что в конце концов она стала бы кривой, и не существует совершенно плоской поверхности, потому что при продолжении она должна следовать кривизне Вселенной. Но так как плоскость будет искривляться во всех направлениях, искривленная плоскость оказывается сферической. Единственная геометрия, которая действительно существует, является сферической».

Эта спонтанная презентация содержала самую суть будущей геометрии Римана, которая отличается и от евклидовой, и от геометрии Лобачевского. В геометрии Римана нет прямых линий, а сумма углов треугольника больше 180°. Поверхность сферы является лучшей моделью для геометрии Римана. Сфера является частным случаем эллипсоида, удлиненной сферы. В этой модели прямые, как и в гиперболической геометрии, называются геодезическими линиями и являются большими окружностями, то есть такими окружностями, которые делят сферу на два равных полушария.



Все геодезические линии пересекаются, а треугольник АВС содержит два прямых угла, так что сумма его углов больше 180° (см. рисунок на предыдущей странице). В этой геометрии чем больше площадь треугольника, тем больше сумма его углов, и подобными являются только конгруэнтные треугольники, то есть те, которые совпадают при наложении друг на друга. Таким образом, поверхность сферы является моделью эллиптической геометрии. Как видно на предыдущей странице, сумма углов треугольника на такой поверхности больше 180°.

Риман не только построил эллиптическую геометрию, он также использовал алгебраические выражения (дифференциальные уравнения) для вычисления минимальных расстояний. Ему также удалось посчитать кривизну любого трехмерного пространства. Кроме того, его вычисления могут быть применены для многомерных пространств. Его результаты позже использовал Альберт Эйнштейн при работе над теорией относительности.


Похожие, но разные


Первыми математиками, которые разделили все геометрии на три типа, были Феликс Клейн и основатель современной британской школы чистой математики Артур Кэли (1821–1895). Выделив гиперболическую и эллиптическую геометрии, они описали евклидову геометрию как параболическую. О причинах этого мы расскажем позже.

Неевклидовы геометрии не затмили их знаменитую предшественницу. Конечно, они все отличаются, но и сходств между ними достаточно много. В евклидовой геометрии две прямые пересекаются в точке, то же самое происходит в геометрии Лобачевского. У Римана две прямые (большие окружности) всегда пересекаются в точке и в ее антиподе с другой стороны сферы.



У Евклида через точку вне прямой проходит только одна прямая, параллельная данной. Лобачевский утверждал, что таких прямых по крайней мере две. По словам Римана, таких прямых вообще не бывает.

У Евклида параллельные прямые находятся на одинаковом расстоянии друг от друга, у Лобачевского это не так. Что касается суммы углов треугольника, у Евклида она всегда 180°, у Лобачевского — меньше 180°, а у Римана — больше 180°.



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика