Читаем Когда прямые искривляются полностью

Если взять точку на прямой линии, то у Евклида и Лобачевского линия будет разделена на две части, но у Римана это не так. У Евклида два треугольника с одинаковыми углами подобны, а у Лобачевского и Римана такие треугольники конгруэнтны.

В следующей таблице приведены основные различия этих геометрий:



Евклидова геометрия может быть построена на плоскости, гиперболическая геометрия — на поверхности псевдосферы, а эллиптическая — на поверхности сферы.

Эти модели наглядно показывают интерпретацию пятого постулата в каждой геометрии, что изображено на следующих рисунках вместе с соответствующими проекциями. Обратите также внимание на то, как выглядят прямоугольники в каждой геометрии.



В евклидовом прямоугольнике все углы по 90°, в геометрии Лобачевского углы «прямоугольника» меньше 90°, а в эллиптической геометрии — больше 90°.




На евклидовой плоскости только одна прямая параллельна l. На псевдосфере бесконечное число прямых, проходящих через Р и лежащих между прямыми l1 и l2, не пересекаются с прямой l. На сферической поверхности через точку Р не проходит ни одной линии, параллельной l. Прямая l пересекает любую другую, проходящую через точку Р.

* * *

ЕВКЛИДОВА ГЕОМЕТРИЯ В РЕАЛЬНОСТИ

На всех глобусах Земли изображены меридианы. Все эти линии, перпендикулярные экватору, пересекаются в двух точках, в полюсах сферы. Кроме того, меридианы являются конечными линиями. Тот же эффект можно наблюдать вдоль длинной прямой дороги: кажется, что параллельные линии встречаются на горизонте. Даже евклидова реальность предполагает существование других геометрий.

С другой стороны, если мы представим себя на поверхности шара и нарисуем там треугольник, чему будет равна сумма его внутренних углов? А если мы представим себя на внутренней поверхности шара, чему тогда будет равна сумма внутренних углов треугольника? А теперь представьте себе огромный воздушный шар, бесконечно большой, на поверхности которого живут крошечные, бесконечно малые существа. В их мире, кривая поверхность будет казаться плоской, то есть, евклидовой.



* * *

Муравьиные бега


Воображаемые муравьиные бега являются очень удобным способом ясно и наглядно смоделировать три типа геометрии и проиллюстрировать их сходства и различия.

Представьте себе двух муравьев, участвующих в бегах. Они начинают бежать примерно одновременно, и в принципе они бегут параллельно друг другу. Муравьи всегда бегут вперед, не поворачивая налево или направо, но их прямолинейная траектория будет выглядеть по-разному в зависимости от типа геометрии, используемой для описания поверхности.

Если два муравья бегут по идеально ровной поверхности — евклидовой плоскости, — их пути не будут ни сходиться, ни расходиться, а будут оставаться на равном расстоянии друг от друга.

Если муравьи бегут по искривленной поверхности, их пути либо сходятся, либо расходятся, поскольку являются прямыми линиями на данной поверхности. Как показано на следующем рисунке, если поверхность имеет сферическую форму, муравьи в конечном итоге встретятся, потому что пространство, в котором они движутся, не просто кривое, но и вогнутое. Если поверхность гиперболическая, муравьи постепенно разойдутся, потому что это пространство выпуклое.



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика