Давайте постулируем, что зарождение жизни является
Наша Галактика, как она выглядела из Веллингтона, Новая Зеландия, 25 октября 2013 г.
Для начала сузим ε-пространство так, чтобы оно включало только планеты, где есть океаны и тектоника плит – их мы обычно называем «землеподобными». Возможно, это одна планета из десятка тысяч (точно мы не знаем). Скажем, что планете необходимо иметь крупный спутник, который управляет приливами древних океанов, обеспечивая сложное взаимодействие суши и моря. Возможно, это одна планета из десяти (в конце концов, нам известны системы Земля – Луна и Плутон – Харон, так что это явление не необычно). Также предположим, что требуется наличие одной или нескольких планет-гигантов на более отдаленных орбитах: они служат фильтром, не допускающим поздних бомбардировок астероидами и кометами, удары которых могут уничтожить жизнь как только она зародится. Это, вероятно, одна планета из десяти тысяч, принимая во внимание то, что наша Солнечная система кажется уникальной среди тысяч известных нам систем. Так что теперь мы имеем одну планету на миллиард. Давайте даже предположим, что нам необходима такая соседняя планета, как Марс, где жизнь может зародиться раньше, пока обитаемая в долгой перспективе планета (Земля) остывает от своего перегрева. Думаю, это будет одна планета из десяти. Еще допустим, что вокруг должно быть достаточное количество астероидов и комет (но не слишком много!), так, чтобы небольшое космическое тело в конце концов перебросило жизнь с аналога Марса на аналог Земли. Возможно, это снова одна планета из десяти, так что теперь у нас остаются примерно две такие планеты во всем Млечном Пути. Центральная звезда должна быть относительно стабильной и иметь ожидаемую продолжительность жизни в несколько миллиардов лет; может потребоваться, чтобы она была похожа на Солнце, так что, скажем, такая попадается один раз на сотню. Теперь таких планет куда меньше одной во всей Галактике. Также может потребоваться поздняя доставка с других тел системы биогенных молекул, например фосфорных или углеродных соединений, с помощью астероидов. Думаю, выполнение этого условия мы получаем бесплатно в нагрузку к баллистической панспермии, но добавим для полной уверенности еще один порядок. Далее, предположим, что планета должна находиться в правильной части галактики, чтобы жизнь не уничтожили вспышки гамма-лучей и прочая звездная активность. Пусть это будет еще одна из ста. Наконец, чтобы мало не показалось, пусть у нас должно произойти позднее столкновение К/Т-типа, массовое вымирание, которое позволит видам-аутсайдерам (в нашем случае – млекопитающим) выбраться из своих нор и захватить планету. Это еще одна из ста. Теперь у нас остался один шанс на миллиард триллионов. Такая величина ε подразумевает, что во Вселенной есть по меньшей мере сотня тысяч очень близких копий Земли – если, конечно, каждый отдельный дротик летит в мишень случайным образом!
Аргументы такого рода – если вы бросите в мишень сто тысяч миллиардов триллионов дротиков, то, скорее всего, сотню тысяч раз попадете в яблочко, – имеют ограниченную практическую ценность с точки зрения возможности что-либо предсказать, но могут послужить некой основой. Например, что, если каждая из планет не является уникальной, а вместо сотни миллиардов триллионов случайных экспериментов существует по сотне триллионов почти точных копий всего нескольких миллиардов типов планет? Тогда вероятность обнаружить что-либо внутри ε-пространства может оказаться близкой к нулю. Если образование планет похоже на создание дождевых капель, то вы можете наделать их бесконечное число, и у каждой из них будут свои отличительные характеристики – соленость, диаметр, температура, – но все они будут дождевыми каплями.