В качестве примера распознавания других паттернов обратимся к идентификации треугольника. На рис. 16.5 изображено несколько треугольников, каждый из которых человек может с легкостью опознать и классифицировать. Если прототип «треугольности», хранимый в программе компьютера, соответствует «правильной» матрице треугольника
Рис. 16.5. «Хорошие» (
Наша способность немедленно распознавать каждую из этих фигур как треугольник объясняется обширным опытом восприятия других треугольных объектов; абстрактное представление о
Компьютерное распознавание сложных форм применяется на практике в области распознавания лиц. Предположим, что ваше лицо имеет уникальные признаки, такие же, как отпечатки пальцев. Компьютерная система, которая может сканировать лицо человека и найти полное соответствие с ним, могла бы очень помочь в работе полиции. Она также оказалась бы полезной для идентификации чеков и в системах безопасности промышленных объектов и офисов. Представьте, что каждое утро на работе вас приветствует компьютер, который просит: «Пожалуйста, расположите ваше лицо так, чтобы я мог его увидеть», — а после его сканирования и открытия двери говорит: «Здравствуйте, госпожа Джуэль, вам звонил В. М. Бич... и, между прочим, с днем рождения». Хотя вы можете воспринять это как еще одно вторжение в вашу личную жизнь, вероятно, что довольно скоро нам придется смириться с такими устройствами.
Исследование идентификации лиц было проведено специалистами по компьютерам Томасом Поджо и Роберто Брунелли в Массачусетском технологическом институте. Суть программы состояла в определении и математическом анализе существенных признаков лиц, таких как ширина носа, расстояние между глазами и подбородком и т. д. Были выявлены шестнадцать признаков (рис. 16.6).
Рис. 16.6. Сравнение лиц. Чтобы это лицо соответствовало лицу в памяти компьютера, для установления сходства собраны и используются в формуле шестнадцать таких ключевых признаков, как глаза, нос и размеры подбородка. Данная формула основана на измерении евклидового расстояния в шестнадцатимерном пространстве. Эту работу ведут в Массачусетском технологическом институте Р. Брунелли и Т. Поджо
Если бы лица не менялись, было бы достаточно простой модели сравнения с эталоном; однако наши лица никогда не бывают одинаковыми. Поэтому программа должна найти близкое сходство между вашим лицом сегодня и вашим лицом на прошлой неделе, но при этом не быть слишком снисходительной, чтобы пропустить самозванца. Программа делает это путем геометрического сравнения различных аспектов признаков и обещает быть намного более надежной, чем идентификация лиц, осуществляемая людьми. Такое устройство могло бы помочь разгадать некоторые фотографические тайны, неожиданно возникающие время от времени (например, находка очень ранней фотографии человека, который может быть (или не быть?) Авраамом Линкольном).
Может ли этот человек быть Авраамом Линкольном?
Эта сделанная в начале XIX века фотография молодого человека, похожего на Линкольна, но он ли это? Компьютерный анализ лицевых признаков может помочь дать ответ на этот вопрос.