Как можно заметить, основной принцип этой классификации — распределение горных пород и минералов по группам твердости, вязкости, зернистости и другим физическим свойствам, от которых зависит применение той или иной технологии обработки камня.
Все твердые тела разделяются на аморфные и кристаллические. Одна из особенностей аморфного вещества состоит в том, что при нагревании они размягчаются, становясь всё более жидкими. Четкой температуры перехода из твердого состояния в жидкое, т. е. температуры плавления, аморфные вещества не имеют. Это можно наблюдать на примере стекла, которое при повышении температуры размягчается, становясь всё жиже и жиже. По-другому ведут себя кристаллические вещества. При нагреве их температура повышается до тех пор, пока не начнется плавление. В этот момент подъем температуры прекращается и плавление происходит при постоянной температуре. Такая температура называется температурой плавления вещества. Каждое кристаллическое вещество имеет строго постоянную температуру плавления. Ее еще называют «точкой плавления». После полного расплавления температуру жидкого состояния вещества можно поднимать еще путем дополнительного нагрева, вплоть до перехода в газообразное состояние.
Примеры природных аморфных камней немногочисленны. Это янтарь, гагат, обсидиан.
Аморфное состояние вещества не является устойчивым и имеет тенденцию к кристаллизации. Так, аморфное стекло с течением времени кристаллизуется. С этим явлением хорошо знакомы стекольщики, которые не любят резать старые оконные стекла. Чем старее стекло, тем труднее получить ровный разрез.
Скорость и время кристаллизации разных аморфных веществ разная. У одних это могут быть годы, у других — тысячелетия.
Кристаллография — наука, изучающая формы, внутреннюю структуру, свойства кристаллов и процессы их образования.
Кристаллы — основная форма существования твердых тел. Подсчитано, что около 95 % каменной оболочки Земли находится в кристаллическом состоянии.
Практически все минералы имеют кристаллическую структуру. Она может быть выражена крупными кристаллами, вид которых всегда восхищает наш взгляд, или иметь скрытокристаллическое строение, которое мы можем видеть при помощи увеличительных приборов. Даже такое вещество, как глина, которое, казалось бы, совсем далеко отстоит от кристаллов, при рассматривании через микроскоп обнаруживает кристаллическое строение.
Кристаллография базируется на математике, физике и химии. Она объединяет три раздела: геометрическую кристаллографию, занимающуюся изучением внешних форм кристаллов и геометрических законов их образования; кристаллохимию, изучающую внутреннее строение кристаллических веществ и их зависимость от химического состава, и кристаллофизику, изучающую симметричные закономерности физических свойств кристаллов.
Элементы симметрии
Самая главная и наиболее общая закономерность кристаллических веществ — симметричность построения внутренней пространственной решетки и, как следствие, построение внешних форм согласно законам симметрии. Симметричность любой фигуры выявляется при помощи элементов симметрии. В кристаллических многогранниках существует три элемента симметрии. (Забегая вперед, скажем, что не во всякой форме кристалла обязательно присутствуют все три элемента.) Рассмотрим эти элементы на примере простой фигуры — куба (рис. 1).
Рис. 1
Центр симметрии — это точка внутри фигуры, свойство которой таково, что любая прямая, проведенная через эту точку, делится ею пополам. На нашем примере точка «о» есть центр симметрии. На рис. 1-I, II, III прямые
Плоскость симметрии — это воображаемая плоскость, которая делит фигуру на две равные и зеркально одинаковые части. На нашем примере (см. рис. 1–1,
В реальных кристаллах наибольшее количество плоскостей симметрии равно девяти, как в рассмотренном примере. Имеются и такие, у которых нет ни одной плоскости симметрии.