Чтобы предоставить поклонникам беспроводных сетей желанное увеличение скорости, в 1999 и 2003 годах были разработаны новые методы передачи на основе мультиплексирования с ортогональным частотным разделением (Orthogonal Frequency Division Multiplexing, OFDM), описанного в разделе 2.5.3. Первый метод, 802.11a, работает в другом диапазоне частот — 5 ГГц. Второй, 802.11g, остался в диапазоне 2,4 ГГц для обеспечения совместимости. Оба работают на скорости до 54 Мбит/с.
В октябре 2009 года окончательно сформировался стандарт 802.11n. Он содержит методы передачи данных, дающие значительный прирост скорости за счет одновременного использования нескольких антенн на приемнике и передатчике.
Дойдя до конца алфавита, в декабре 2013 года институт IEEE опубликовал стандарт под названием 802.11ac. Следует заметить, что члены комитета 802.11 используют пропущенные буквы для внесения небольших технических улучшений, часто служащих для уточнения или исправления ошибок (например, в случае стандарта 802.11r). Стандарт 802.11ac предназначен для диапазона 5 ГГц, поэтому он несовместим со старым оборудованием, работающим только в полосе 2,4 ГГц. Сегодня наиболее продвинутые мобильные устройства используют 802.11ac. Недавно принятый 802.11ax обеспечивает еще более высокую скорость.
Далее мы вкратце рассмотрим все эти методы передачи и подробно изучим самые актуальные из них, отбросив устаревшие стандарты 802.11. Формально они относятся к физическому уровню, которому была посвящена глава 2. Но из-за того, что они тесно связаны с беспроводными LAN вообще и с LAN стандарта 802.11 в частности, мы познакомимся с ними здесь.
4.4.2. Стандарт 802.11: физический уровень
Все представленные ниже методы позволяют передать фрейм подуровня MAC с одной станции на другую по радиоканалу. Отличаются они используемыми технологиями и скоростями, достижимыми на практике. Детальное рассмотрение этих методов выходит за рамки нашей книги, мы лишь дадим краткое описание, которое, возможно, заинтересует читателей и снабдит их необходимыми терминами для поиска более подробной дополнительной информации (см. также главу 2).
Все методы стандарта 802.11 используют радиосигналы ближнего радиуса действия в диапазонах 2,4 ГГц или 5 ГГц. Преимущество этих полос в том, что они не требуют лицензирования, то есть доступны для любого передатчика, отвечающего небольшому числу ограничений, например излучаемой мощности до 1 Вт (хотя для большинства передатчиков в беспроводных LAN характерна мощность 50 мВт). К сожалению, этот факт также известен производителям автоматических гаражных дверей, беспроводных телефонов, микроволновых печей и множества других устройств, конкурирующих за спектр частот с ноутбуками и смартфонами, использующими Wi-Fi. Полоса 2,4 ГГц более заполнена, поэтому в некоторых случаях 5 ГГц предпочтительнее (несмотря на меньший радиус действия из-за более высокой частоты). К сожалению, радиоволны 5 ГГц короче, чем волны 2,4 ГГц, и не так хорошо проходят сквозь стены, поэтому этот диапазон не является безоговорочным победителем.
Все методы позволяют передавать сигнал на разной скорости в зависимости от текущих условий. Если беспроводной сигнал слабый, выбирается низкая скорость, если сильный — ее можно повысить. Такая корректировка называется адаптацией скорости (rate adaptation). Скорости могут различаться в десятки раз, поэтому хорошая адаптация важнее производительности соединения. Поскольку для совместимости это значения не имеет, в стандартах не говорится, как именно корректировать скорость.
Первый метод передачи, который мы рассмотрим, — 802.11b. Это технология расширенного спектра, поддерживающая скорости 1, 2, 5,5 и 11 Мбит/с (на практике рабочая скорость почти всегда близка к максимальной). Данный метод похож на систему CDMA (см. раздел 2.4.4), однако в нем есть только один код расширения спектра, применяемый всеми пользователями. Расширение необходимо для выполнения требования FCC: мощность должна распределяться по диапазону ISM. Для стандарта 802.11b используется последовательность Баркера (Barker sequence). Ее отличительная особенность — в низкой автокорреляции (за исключением случаев, когда последовательности выровнены). Благодаря этому получатель может захватить начало передачи. Для достижения скорости 1 Мбит/с последовательность Баркера комбинируется с модуляцией BPSK, и с каждым набором из 11 элементарных сигналов (чипов) передается 1 бит. Сигналы пересылаются со скоростью 11 мегачипов/с. Чтобы достичь скорости 2 Мбит/с, последовательность комбинируется с модуляцией QPSK, и на каждые 11 чипов приходится 2 бита. На более высоких скоростях дело обстоит по-другому. Вместо последовательности Баркера для конструирования кодов применяется дополнительная кодовая манипуляция (Complementary Code Keying, CCK). На скорости 5,5 Мбит/с в каждом коде из 8 элементарных сигналов отправляется 4 бита, а на скорости 11 Мбит/с — 8 бит.