Читаем Компьютерные сети. 6-е изд. полностью

Уменьшения длины фреймов можно добиться, сократив максимальный размер сообщения, которое принимается от сетевого уровня. Кроме того, 802.11 позволяет разделять фреймы на фрагменты (fragments), каждый из которых снабжается отдельной контрольной суммой. Размер фрагмента не фиксирован, а является параметром, который может быть скорректирован точкой доступа. Фрагменты нумеруются и подтверждаются индивидуально с использованием протокола с ожиданием (то есть отправитель не может передать фрагмент с номером k + 1, пока не получит подтверждение о доставке фрагмента с номером k). Они идут один за другим с подтверждением (и возможно, с повторной отправкой) между ними, до тех пор пока весь фрейм не будет успешно передан или пока время передачи не достигнет заданного максимума. Представленный выше механизм NAV удерживает станции от передачи только до прихода первого подтверждения о доставке. Но есть и другой механизм (описанный далее), который позволяет получателю принять всю пачку фрагментов, без фреймов от других станций между ними.

Вторая потребность, которую мы обсудим, — экономия энергии. Время работы от аккумулятора для мобильных беспроводных устройств всегда представляет проблему. Стандарт 802.11 решает вопрос управления электропитанием, чтобы клиенты не тратили энергию впустую в отсутствие передачи или приема информации.

Экономия энергии обеспечивается главным образом за счет использования фреймов-маяков (beacon frames). Это периодические широковещательные сообщения, отправляемые точкой доступа (AP), например, каждые 100 мс. Фреймы сообщают клиентам о присутствии AP и содержат системные параметры: идентификатор AP, время, интервал до следующего маяка и настройки безопасности.

Клиенты могут вставить бит управления электропитанием во фреймы, с помощью которых они сообщают точке доступа о переходе в энергосберегающий режим (power-save mode). В этом режиме клиент может «дремать», а AP будет буферизовать предназначенный для него трафик. Чтобы проверить наличие входящего трафика, клиент «просыпается» при каждом приходе маяка и проверяет содержащуюся в нем карту трафика. Эта карта говорит клиенту о наличии буферизованного трафика. Если он есть, клиент посылает сообщение опроса в точку доступа и она передает буферизованный трафик. Затем клиент может вернуться в спящий режим до следующего маяка.

В 2005 году к 802.11 был добавлен другой энергосберегающий механизм, автоматический переход в режим сохранения энергии (Automatic Power Save Delivery, APSD). Точка доступа буферизирует фреймы и посылает их клиенту сразу после того, как он передает ей фреймы. Клиент может перейти в спящий режим, пока у него нет большего количества трафика для отправки (и получения). Этот механизм хорошо работает, например, в IP-телефонии (VoIP), где трафик часто идет в обоих направлениях. Например, беспроводной IP-телефон мог бы использовать APSD, чтобы посылать и получать фреймы каждые 20 мс (это намного чаще, чем интервал маяка в 100 мс), а в промежутках находиться в спящем режиме.

Третья, и последняя, потребность, которую мы исследуем, — это QoS. При конфликте высокоскоростного однорангового трафика и VoIP-трафика из предыдущего примера пострадает последний. Он будет передаваться с задержками, даже при том, что требования к пропускной способности у IP-телефонии невелики. Эти задержки, вероятно, понизят качество голосовых вызовов. Чтобы предотвратить это, нужно предоставить трафику IP-телефонии более высокий приоритет.

В IEEE 802.11 есть умный механизм, обеспечивающий этот вид QoS. Он был введен в 2005 году как набор расширений под названием 802.11e. Он расширяет CSMA/CA с помощью точно определенных интервалов между фреймами. После отправки фрейма, прежде чем любая станция сможет начать передачу, требуется определенное количество времени простоя, чтобы проверить, что канал больше не занят. Эта уловка должна определить различные временные интервалы для разных видов фреймов.

На илл. 4.28 изображено пять интервалов. Интервал между регулярными фреймами данных называется DIFS (DCF InterFrame Spacing — межфреймовый интервал DCF). Любая станция может попытаться захватить канал, чтобы послать новый фрейм после того, как среда была неактивна для DIFS. При этом действуют обычные правила конкуренции, включая двоичную экспоненциальную выдержку в случае коллизии. Самый короткий интервал — это SIFS (Short InterFrame Interval — короткий межфреймовый интервал). Он используется для того, чтобы одна из сторон в диалоге могла получить шанс начать первой.

Например, можно разрешить получателю отправить ACK или другие последовательности фреймов управления, такие как RTS и CTS, или разрешить отправителю передать пакет фрагментов. Отправка следующего фрагмента только после ожидания SIFS препятствует вмешательству другой станции во время обмена данными.

Илл. 4.28. Межфреймовые интервалы в стандарте 802.11

Перейти на страницу:

Похожие книги