Из-за примитивности наших экспериментальных методик сейчас мы можем обнаруживать лишь самые «грубые» разновидности переподключения. Вот почему нейробиологи вынуждены рассматривать довольно-таки экстремальные случаи – к примеру, монокулярной депривации или стрэттоновских очков. Остающиеся пока невидимыми более тонкие разновидности переподключения могут, между тем, играть весьма важную роль в более нормальных процессах обучения. Даже если коннектомика просто поможет дать более ясную картину этого явления, она волей-неволей будет способствовать исследованиям в данной области.
В 1999 году между двумя нейробиологами произошел яростный заочный бой. В одном углу воображаемого ринга стоял Паско Ракич из Йельского университета – чемпион, всячески защищавший свой титул. Еще в семидесятых годах его статьи, широко известные в научных кругах, утвердили догму: в мозгу млекопитающих не возникает новых нейронов после рождения – или, по крайней мере, после наступления половой зрелости. Претенденткой на победу оказалась Элизабет Гулд из Принстона, поразившая коллег сообщением о новых нейронах, появившихся в неокортексе взрослых обезьян. (Основную часть коры головного мозга как раз и составляет неокортекс, и карту именно этой части построил Бродман.) Ее открытие газета
Нетрудно понять, отчего схватка между двумя уважаемыми профессорами попала на первые полосы. Когда тело само себя ремонтирует, это всегда восхищает. Раны на коже затягиваются, оставляя лишь шрам. А из всех внутренних органов по способности к самовосстановлению лидирует печень: она вырастет заново, даже если удалить две трети. Если бы неокортекс взрослого человека мог выращивать новые нейроны, это означало бы, что у мозга способность к самоисцелению гораздо больше, чем нам казалось.
В итоге ни один из соперников так и не стал бесспорным победителем. Неокортекс, похоже, действительно следует максиме «У взрослых не появляются новые нейроны». Однако сам Ракич вынужден был признать, что новые нейроны постоянно возникают в двух участках зрелого мозга – гиппокампе и обонятельной луковице. (Обонятельная луковица играет для носа ту же роль, что и сетчатка для глаза, а гиппокамп – одна из важнейших частей коры, не являющихся частью неокортекса.)
Поскольку новые нейроны появляются в этих двух участках мозга в нормальных условиях, даже в отсутствие всяких повреждений, они возникают, видимо, не для лечения. Возможно, они благотворно действуют на потенциал обучения, подобно тому как новые синапсы предположительно увеличивают емкость памяти, позволяя нам усваивать новые ассоциации. Гиппокамп находится в срединной части височной доли – там, где когда-то обнаружили «нейрон Дженнифер Энистон». По мнению некоторых исследователей, гиппокамп – своего рода «ворота» памяти. Ученые предполагают, что он первым накапливает поступающую информацию, а затем уже передает ее в другие участки мозга – например, в неокортекс. Если это так, гиппокамп должен быть необычайно пластичным, а появление в нем новых нейронов еще больше усиливает его пластичность.
Точно так же и обонятельная луковица могла бы использовать новые нейроны, чтобы лучше запоминать запахи.
Согласно концепции нейронного дарвинизма, самоуничтожение синапсов идет рука об руку с их созданием: таким путем накапливаются воспоминания. Мы могли бы ожидать, что и создание нейронов сопровождается процессом их исчезновения. Такая картина действительно наблюдается у клеток многих типов: они постоянно умирают в ходе развития организма. Подобную гибель клеток именуют запрограммированной, поскольку она чем-то напоминает самоубийство. Клетки от природы наделены механизмами саморазрушения и способны приводить их в действие, когда возникает соответствующий стимул.
Вам может показаться, что ваша кисть отращивала пальцы, добавляя новые клетки к уже существующим. Не совсем так. На самом деле в вашей руке, еще когда вы были эмбрионом,