Мы не замечаем этих поперечных перемещений в таких веществах, как сталь или кость, в силу малости как продольной, так и поперечной деформаций, но фактически и здесь дело обстоит точно так же. То обстоятельство, что подобные эффекты характерны для всех твердых тел и такое поведение существенно для практических задач, было впервые отмечено французом С.Д. Пуассоном (1781-1840). Он родился в очень бедной семье и в детстве не получил сколько-нибудь систематического образования, но в возрасте тридцати одного года стал академиком, а во Франции это одна из наивысших почестей, и он удостоился ее за свои работы в области теории упругости. Как было сказано в гл. 2, закон Гука гласит, что
модуль Юнга =Поэтому, если мы приложим к плоской пластинке растягивающее напряжение
Однако, кроме того, пластинка сократится в поперечном направлении (то есть в направлении под прямым углом к напряжению
Деформацию
Таким образом, если мы знаем значения величин ν
иДля материалов, используемых в технике, таких, как металлы, камень и бетон, значения
ν лежат всегда между 1/4 и 1/3. Для твердых биологических материалов значения коэффициента Пуассона обычно выше, и часто они лежат вблизи 1/2. Преподаватели элементарной теории упругости сказали бы вам, что коэффициент Пуассона не может принимать значений больше 1/2, иначе происходили бы разного рода абсурдные и неприемлемые вещи. Это справедливо лишь отчасти, и значения коэффициента Пуассона для некоторых биологических материалов являются очень высокими, часто они больше единицы[51]. Экспериментальное значение коэффициента Пуассона для моего живота, измеренное недавно мною в ванне, составляет примерно единицу (см. сноску выше).Таким образом, как сказано выше, благодаря коэффициенту Пуассона, если мы растягиваем в каком-либо одном направлении кусок материала, такой, как пленка или стенка артерии, он удлиняется в этом направлении, но одновременно сокращается в перпендикулярных. Поэтому в случаях, когда растягивающее напряжение действует не в одном, а в двух взаимно перпендикулярных направлениях, возникающие деформации будут разностью тех деформаций, которые создало бы каждое из этих напряжений в отдельности, и окажутся поэтому меньше последних.
При одновременном действии напряжений
Отсюда, используя результаты, приведенные в гл. 5
[52], с учетом коэффициента Пуассона получаем, что продольная деформация стенок трубы, находящейся под внутренним давлением и сделанной из материала, подчиняющегося закону Гука, будетВ результате увеличение длины трубы оказывается значительно меньшим, чем можно было бы ожидать; для гуковского же материала с коэффициентом Пуассоны, равным 1/2, продольные перемещения вообще отсутствуют. В действительности, как говорилось выше, материал стенок артерий не подчиняется закону Гука, в то же время коэффициент Пуассона для него, вероятно, больше 1/2. Возможно, эти два фактора взаимно компенсируются, поскольку соответствующие удлинения, фактически наблюдаемые в эксперименте, очень малы
[53]. Несомненно, тот факт, что артерии постоянно находятся в организме в натянутом состоянии, свидетельствует о мерах предосторожности, принятых Природой против любых возможных остаточных удлинений кровеносных сосудов.Эффекты, связанные с коэффициентом Пуассона, по-видимому, играют важную роль в поведении тканей животных; но они важны и в технике, о чем свидетельствуют все новые факты, возникающие, как правило, неожиданно и в самых разных сочетаниях.