Для дальнейшего анализа данных оцениваются меры центральной тенденции в распределении результатов тестирования, которые предназначены для выявления той точки, вокруг которой в основном группируются все результаты выполнения теста. При анализе результатов тестирования можно использовать разные подходы к определению такой центральной точки. Наиболее простой способ основан на выявлении моды распределения и среднего арифметического баллов.
Мода – это такое значение, которое встречается наиболее часто среди результатов выполнения теста. Например, для данных табл. 6.3 модой является балл 4, потому что он встречается чаще (3 раза) любого другого балла. Конечно, не всякое распределение имеет единственную моду, их может быть две или больше. В случае существования двух мод распределение называется бимодальным. Если все значения баллов студентов встречаются одинаково часто, принято считать, что моды у распределения нет.
Среднее выборочное (среднее арифметическое) определяется суммированием всех значений совокупности и последующим делением на их число. Для индивидуальных баллов
(6.1)
Среднее арифметическое индивидуальных баллов испытуемых для рассматриваемого выше примера матрицы (см. табл. 6.2) равно
В отличие от моды, фиксирующей одно или несколько значений, на величину среднего влияют значения всех результатов распределения. Таким образом, среднее арифметическое характеризует все распределение в целом. Оно обобщает индивидуальные особенности составляющих распределения на основе уравнивания отдельных значений рассматриваемой величины.
Меры центральной тенденции полезны при оценке качества теста, если есть результаты апробации теста на репрезентативной выборке студентов. Обычно считают, что хороший нормативно-ориентированный тест обеспечивает нормальное распределение индивидуальных баллов репрезентативной выборки испытуемых, если среднее значение баллов находится в центре распределения, а остальные значения концентрируются вокруг среднего по нормальному закону, т.е. примерно 70% значений находятся в центре, а остальные сходят на нет к краям распределения, как на рис. 6.2.
Если тест обеспечивает распределение баллов, близкое к нормальному, то это означает, что на его основе можно определить устойчивое среднее, которое принимается в качестве одной из репрезентативных норм выполнения теста. Обратный вывод, вообще говоря, неверен: устойчивость тестовых норм не предполагает обязательного нормального распределения эмпирических результатов выполнения теста. Нормальная кривая – это изобретение математиков, которое в сглаженном, идеальном виде описывает реальный полигон частот. На практике никогда не была и не будет получена совокупность данных, распределенных точно по нормальному закону, просто иногда полезно, допуская определенную ошибку, утверждать, что распределение эмпирических данных близко к нормальной кривой.
Нормальное распределение унимодально и симметрично, т.е. половина результатов, расположенная ниже моды, в точности совпадает с другой половиной, расположенной выше, а мода и среднее значение равны. Отсутствие полной симметрии в полигоне частот на практике приводит к смещению моды относительно среднего значения.
В малых выборках мода, как и среднее значение, теряет свою стабильность, хотя причина нестабильности может быть другая, связанная с неправильным подбором по трудности заданий в тесте. Например, если на репрезентативной выборке студентов получилась гистограмма тестовых баллов с бимодальным распределением, то среднее значение распределения, находящееся в центре, никак не может служить нормой выполнения теста. Скорее всего, тест был сконструирован неудачно, что послужило причиной отсутствия нормального распределения эмпирических результатов выполнения теста. Смещение среднего значения баллов студентов влево или вправо говорит о слишком трудной либо слишком легкой подборке заданий теста соответственно.
Таким образом, правильно сконструированный нормативно-ориентированный тест на репрезентативной выборке студентов должен обеспечивать близкое к симметричному распределение индивидуальных баллов, когда мода и среднее значение примерно равны, а остальные результаты расположены вокруг среднего по нормальному закону.
Дальнейший анализ данных тестирования связан с оцениванием мер изменчивости в распределении индивидуальных баллов. Характеристика изменчивости указывает на особенности разброса эмпирических данных вокруг среднего значения баллов. Отдельные значения индивидуальных баллов могут быть тесно сгруппированы вокруг своего среднего балла либо, наоборот, сильно удалены от него. Для отражения характера рассеяния отдельных значений вокруг среднего используют различные меры: размах, дисперсию и стандартное отклонение.