Размах измеряет на шкале расстояние, в пределах которого изменяются все значения показателя в распределении. Например, для распределения индивидуальных баллов в табл. 6.3 размах равен 9 – 1 = 8. Вариационный размах легко вычисляется, но используется крайне редко при характеристике распределения баллов по тесту. Во-первых, размах является весьма приближенным показателем, так как не зависит от степени изменчивости промежуточных значений, расположенных между крайними значениями в распределении баллов по тесту. Во-вторых, крайние значения индивидуальных баллов, как правило, ненадежны, поскольку содержат в себе значительную ошибку измерения. В этой связи более удачной мерой изменчивости считается дисперсия.
Подсчет дисперсии основан на вычислении отклонений
Если просуммировать все отклонения, взятые со своим знаком, то для симметричных распределений сумма будет равна нулю. В рассматриваемом примере матрицы сумма отклонений
Чтобы отрицательные и положительные слагаемые не уничтожали друг друга, каждое отклонение возводят в квадрат и находят сумму квадратов отклонений. Эта сумма будет большой, если результаты тестирования отличаются существенной неоднородностью, и малой в случае близких результатов испытуемых по тесту.
Для рассматриваемого примера данных сумма квадратов отклонений
Величина суммы зависит также от размера выборки испытуемых, выполнявших тест, поэтому для сопоставимости мер изменчивости распределений, отличающихся по объему, каждую сумму делят на
(6.2)
Кроме дисперсии, для характеристики меры изменчивости распределения удобно использовать еще один показатель вариации, который называется стандартным отклонением и вычисляется путем извлечения квадратного корня из дисперсии:
(6.3)
Для рассматриваемого примера данных тестирования
Свойства дисперсии и стандартного отклонения рассматриваются подробно в учебниках по статистике. Заинтересованному читателю можно порекомендовать, например, книгу Дж. Гласс, Дж. Стенли «Статистические методы в педагогике и психологии» [7].
Дисперсия играет важную роль в оценке качества тестов. Низкая дисперсия указывает на плохое качество нормативно-ориентированного теста, поскольку не обеспечивает высокий дифференцирующий эффект. Излишне высокая дисперсия, характерная для случая, когда все студенты отличаются по числу выполненных заданий, также требует переработки теста из-за существенного отличия вида распределения баллов от планируемой нормальной кривой. В процессе коррекции теста следует руководствоваться простым правилом: если проверка согласованности эмпирического распределения с нормальным дает положительные результаты, а дисперсия растет, то это означает, что переработка приводит к повышению его качества.
Использование стандартного отклонения как меры вариации особенно эффективно для нормального распределения баллов испытуемых, поскольку в этом случае можно прогнозировать процент данных, лежащих внутри одного, двух и трех стандартных отклонений, откладываемых от центра распределения. В любом нормальном распределении приблизительно 68% площади под кривой лежит в пределах одного стандартного отклонения, откладываемого влево и вправо от среднего (т.е.
Вообще существует бесконечное множество нормальных кривых, отличающихся друг от друга значениями
Для преобразования любой нормальной кривой в единичную достаточно выполнить вычитание среднего значения
получим нормированное нормальное распределение со средним в нуле и единичным стандартным отклонением.