Читаем Концепции современного естествознания. Шпаргалки полностью

Фарадей открыл электромагнитное поле, доказал его существование опытным путем, но он не был математиком и не мог привести для открытого им явления математического обоснования. Эту работу выполнил физик и математик Максвелл. Он привел блестящие идеи Фарадея в ясный и четкий математический вид и в своих трудах детально разработал теорию электромагнитного поля. Сутью теории Максвелла была система из четырех уравнений, получивших название уравнений Максвелла . Каждое уравнение соответствовало одному из четырех утверждений:

1. Электрическое поле, соответствующее какому-либо распределению заряда, определяется из закона Кулона.

2. 2. Магнитные заряды не существуют.

2. Переменное магнитное поле возбуждает электрический ток.

3. Магнитное поле возбуждается токами и переменными электрическими полями.

Приведенные Максвеллом уравнения доказывали существование электромагнитного поля, объясняли, как формируется электрическое поле на основе вихревого магнитного поля и как электрическое поле, в свою очередь, создает и поддерживает магнитное поле; в силу перехода поле, описанное Максвеллом, было электромагнитным, система мироустройства – электродинамической, а рождающаяся на основе новых открытий и обоснованной теории Максвелла картина мира – электромагнитной картиной мира. На основе своих уравнений Максвелл пришел к мысли о существовании электромагнитных волн, скорость которых должна быть равна скорости света. Вслед за Фарадеем он отнес свет к электромагнитным волнам. К характеристикам электромагнитной волны он отнес ее способность оказывать давление на поставленную перед волной преграду, что позже позволило опытным путем доказать существование этой характеристики. Максвелл предположил, что атом, который физика считала неделимым, состоит из множества элементарных частиц (позже был открыт электрон). Теорию Максвелла принято называть началом конца классической физики. Следом за теорией Максвелла появились электронная теория Лоренца и знаменитая теория относительности Альберта Эйнштейна.

43. Электронная теория Лоренца

Обоснование Максвелла касалось в основном электромагнитных явлений – Максвелла интересовали сами явления, а не среда, в которой они происходят. Хотя Максвелл высказал предположение о делимости атома на еще более мелкие части, сам структурой материи он не занимался. Физик Лоренц считал это большим упущением, он понимал, что для полноты теории Максвелла к ней необходимо присовокупить дополнения, описывающие микромир. Исследования Лоренца были направлены на изучение структуры вещества, разложении его на мельчайшие составляющие. Лоренц первым высказал предположение о существовании крайне малых электрически заряженных частиц – электронов – которые имеются в любом материальном теле.

Свою точку зрения на структуру вещества Лоренц обнародовал в 1865 г. В своей электронной теории Лоренц использовал теорию Максвелла и общепринятые положения о дискретности электрических зарядов, то есть их атомарную составляющую. Теория Лоренца, не имевшая прежде экспериментального подтверждения, блестяще подтвердилась в 1897 г., когда был обнаружен электрон. На общих основаниях электронной теории Лоренц совместно с физиком Друде создал также электронную теорию металлов , основными положениями которой являются следующие:

1. Свободные электроны (электроны проводимости) образуют в металлах электронный газ.

2. Основой структуры металла является кристаллическая решетка, в узлах которой расположены ионы.

3. В электрическом поле действие сил поля превращает беспорядочное движение электронов в упорядоченное.

4. Электрическое сопротивление объясняется тем, что при движении электроны сталкиваются с ионами решетки.

Новая теория хорошо объясняла и давала количественные описания для многих явлений, но некоторые (например, зависимость сопротивления металлов от температуры, нестабильная величина отношения заряда к его массе и т. п.) объяснить не могла. В первые десятилетия XX в. новые открытия подтвердили, что законы классической механики и законы идеальных газов не работают для сверхмалых элементарных частиц, в том числе и для электронов.

44. Относительные и абсолютные системы отсчета

Перейти на страницу:

Все книги серии Зачет

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей