Для химиков изучение нуклеиновых кислот всегда было делом нелегким. Много трудностей связано с очисткой. Необычайно длинные молекулы нуклеиновых кислот разламываются на куски даже при простом перемешивании раствора. Если же принять во внимание, что одна молекула может содержать тысячи или даже миллионы атомов, то становится ясно, что точный химической анализ таких молекул представляет задачу невероятно сложную. Более или менее подходящие методы химического анализа нуклеиновых кислот появились совсем недавно, а прежние методы давали результаты, весьма далекие от истины. Так, например, когда я еще учился в школе, нам говорили, что четыре вида оснований встречаются в нуклеиновых кислотах в равных количествах, т. е. в отношении 1:1:1:1. Теперь же точно установлено, что это совершенно не так.
Определенно можно сказать, что в те далекие времена — а для молекулярной биологии тридцатые годы это вообще времена доисторические — ДНК казалась весьма неподходящим кандидатом на роль носителя биологической информации. Судя по первым анализам, это была довольно «тупая» молекула, в которой четыре основания, представленные в равных количествах, повторялись вдоль цепи в неизменной последовательности. Многие думали тогда, что ДНК служит всего-навсего подпоркой для хромосомного белка. Сам белок считался куда более подходящим претендентом на роль носителя информации: почти нигде не повторяющаяся последовательность из двадцати разных аминокислот великолепно могла бы хранить в себе соответствующим образом закодированную информацию.
И вдруг этим воззрениям, которых придерживались большинство биологов, наносится неожиданный удар. Именно так можно расценить результаты экспериментов, выполненных в середине сороковых годов [XX в.] и относящихся к странному явлению, названному трансформацией бактерий. Эти эксперименты показали, что наследственность многих микроорганизмов, в частности пневмококков (возбудителей пневмонии), может изменяться под действием ДНК. Проще говоря, сделали вот что: из определенного вида пневмококков, которую мы условно назовем штаммом А, вывели чистую нуклеиновую кислоту и стали смотреть, как она воздействует на клетки пневмококков другого штамма — штамма В. Итак, ДНК штамма А проникла в клетки бактерий штамма В — и тут произошло настоящее чудо! Оказалось, что потомство бактерий штамма В и все последующие поколения превратились в бактерии штамма А. Другими словами, наследственные признаки организма можно при желании изменить, вводя ему химически чистую ДНК другого организма, не содержащую — и это особенно важно — никаких примесей белка. Отсюда следует, что, по крайней мере, у бактерий именно ДНК ответственна за передачу наследственной информации. Все более поздние работы показали, что то же самое верно и для других организмов; носителем информации в живых клетках неизменно оказывается ДНК[239]
.Этот замечательный эксперимент и другие аналогичные эксперименты сконцентрировали внимание исследователей на ДНК. Не последнюю роль они сыграли и в судьбе двух моих коллег, Джима Уотсона и Фрэнсиса Крика, тоже увлекшихся проблемой ДНК. Подобно тому, как солнечные лучи, если их сфокусировать, могут вызвать пожар, так и эта фокусировка интереса исследователей на ДНК также привела, фигурально выражаясь, к пожару, преобразившему всю биологию.
В этой главе мы рассказали о том, как биологи, в конце концов, пришли к открытию роли нуклеиновых кислот, которые в живых клетках служат хранителями информации, передаваемой из поколения в поколение, от родителей к потомству. Как только эта роль нуклеиновых кислот прояснилась, возникла насущная потребность в изучении структуры нуклеиновых кислот, которая, возможно, помогла бы понять, как нуклеиновые кислоты выполняют свои три важнейшие функции: самовоспроизведение, хранение информации и реализацию этой информации в процессе роста новых клеток.
Глава 6
Нуклеиновые кислоты — молекулы наследственности
В главе 5 мы установили, что наследственная информация, хранящаяся в каждой клетке и передаваемая от поколения к поколению, заключена в клеточном ядре, в хромосомах. Элементы информации, ответственные каждый за синтез одного определенного белка, называются